Network Working Group C. Ellison

Request for Comments: 2693 Intel

Category: Experimental B. Frantz

 Electric Communities

 B. Lampson

 Microsoft

 R. Rivest

 MIT Laboratory for Computer Science

 B. Thomas

 Southwestern Bell

 T. Ylonen

 SSH

 September 1999

 SPKI Certificate Theory

Status of this Memo

 This memo defines an Experimental Protocol for the Internet

 community. It does not specify an Internet standard of any kind.

 Discussion and suggestions for improvement are requested.

 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 The SPKI Working Group has developed a standard form for digital

 certificates whose main purpose is authorization rather than

 authentication. These structures bind either names or explicit

 authorizations to keys or other objects. The binding to a key can be

 directly to an explicit key, or indirectly through the hash of the

 key or a name for it. The name and authorization structures can be

 used separately or together. We use S-expressions as the standard

 format for these certificates and define a canonical form for those

 S-expressions. As part of this development, a mechanism for deriving

 authorization decisions from a mixture of certificate types was

 developed and is presented in this document.

 This document gives the theory behind SPKI certificates and ACLs

 without going into technical detail about those structures or their

 uses.

Table of Contents

 1. Overview of Contents.......................................3

 1.1 Glossary..4

 2. Name Certification...5

 2.1 First Definition of CERTIFICATE...........................6

 2.2 The X.500 Plan and X.509..................................6

 2.3 X.509, PEM and PGP..7

 2.4 Rethinking Global Names...................................7

 2.5 Inescapable Identifiers...................................9

 2.6 Local Names..10

 2.6.1 Basic SDSI Names.......................................10

 2.6.2 Compound SDSI Names....................................10

 2.7 Sources of Global Identifiers............................11

 2.8 Fully Qualified SDSI Names...............................11

 2.9 Fully Qualified X.509 Names..............................12

 2.10 Group Names...12

 3. Authorization...12

 3.1 Attribute Certificates...................................13

 3.2 X.509v3 Extensions.......................................13

 3.3 SPKI Certificates..14

 3.4 ACL Entries..15

 4. Delegation..15

 4.1 Depth of Delegation......................................15

 4.1.1 No control...15

 4.1.2 Boolean control..16

 4.1.3 Integer control..16

 4.1.4 The choice: boolean....................................16

 4.2 May a Delegator Also Exercise the Permission?............17

 4.3 Delegation of Authorization vs. ACLs.....................17

 5. Validity Conditions.......................................18

 5.1 Anti-matter CRLs...18

 5.2 Timed CRLs...19

 5.3 Timed Revalidations......................................20

 5.4 Setting the Validity Interval............................20

 5.5 One-time Revalidations...................................20

 5.6 Short-lived Certificates.................................21

 5.7 Other possibilities......................................21

 5.7.1 Micali's Inexpensive On-line Results...................21

 5.7.2 Rivest's Reversal of the CRL Logic.....................21

 6. Tuple Reduction...22

 6.1 5-tuple Defined..23

 6.2 4-tuple Defined..24

 6.3 5-tuple Reduction Rules..................................24

 6.3.1 AIntersect...25

 6.3.2 VIntersect...27

 6.3.3 Threshold Subjects.....................................27

 6.3.4 Certificate Path Discovery.............................28

 6.4 4-tuple Reduction..28

 6.4.1 4-tuple Threshold Subject Reduction....................29

 6.4.2 4-tuple Validity Intersection..........................29

 6.5 Certificate Translation..................................29

 6.5.1 X.509v1..29

 6.5.2 PGP..30

 6.5.3 X.509v3..30

 6.5.4 X9.57..30

 6.5.5 SDSI 1.0...30

 6.5.6 SPKI...31

 6.5.7 SSL..31

 6.6 Certificate Result Certificates..........................32

 7. Key Management..33

 7.1 Through Inescapable Names................................33

 7.2 Through a Naming Authority...............................33

 7.3 Through <name,key> Certificates..........................34

 7.4 Increasing Key Lifetimes.................................34

 7.5 One Root Per Individual..................................35

 7.6 Key Revocation Service...................................36

 7.7 Threshold ACL Subjects...................................36

 8. Security Considerations...................................37

 References...38

 Acknowledgments..40

 Authors' Addresses...41

 Full Copyright Statement.....................................43

1. Overview of Contents

 This document contains the following sections:

 Section 2: history of name certification, from 1976 on.

 Section 3: discussion of authorization, rather than authentication,

 as the desired purpose of a certificate.

 Section 4: discussion of delegation.

 Section 5: discussion of validity conditions: date ranges, CRLs, re-

 validations and one-time on-line validity tests.

 Section 6: definition of 5-tuples and their reduction.

 Section 7: discussion of key management.

 Section 8: security considerations.

 The References section lists all documents referred to in the text as

 well as readings which might be of interest to anyone reading on this

 topic.

 The Acknowledgements section, including a list of contributors

 primarily from the start of the working group. [The archive of

 working group mail is a more accurate source of contributor

 information.]

 The Authors' Addresses section gives the addresses, telephone numbers

 and e-mail addresses of the authors.

1.1 Glossary

 We use some terms in the body of this document in ways that could be

 specific to SPKI:

 ACL: an Access Control List: a list of entries that anchors a

 certificate chain. Sometimes called a "list of root keys", the ACL

 is the source of empowerment for certificates. That is, a

 certificate communicates power from its issuer to its subject, but

 the ACL is the source of that power (since it theoretically has the

 owner of the resource it controls as its implicit issuer). An ACL

 entry has potentially the same content as a certificate body, but has

 no Issuer (and is not signed). There is most likely one ACL for each

 resource owner, if not for each controlled resource.

 CERTIFICATE: a signed instrument that empowers the Subject. It

 contains at least an Issuer and a Subject. It can contain validity

 conditions, authorization and delegation information. Certificates

 come in three categories: ID (mapping <name,key>), Attribute (mapping

 <authorization,name>), and Authorization (mapping

 <authorization,key>). An SPKI authorization or attribute certificate

 can pass along all the empowerment it has received from the Issuer or

 it can pass along only a portion of that empowerment.

 ISSUER: the signer of a certificate and the source of empowerment

 that the certificate is communicating to the Subject.

 KEYHOLDER: the person or other entity that owns and controls a given

 private key. This entity is said to be the keyholder of the keypair

 or just the public key, but control of the private key is assumed in

 all cases.

 PRINCIPAL: a cryptographic key, capable of generating a digital

 signature. We deal with public-key signatures in this document but

 any digital signature method should apply.

 SPEAKING: A Principal is said to "speak" by means of a digital

 signature. The statement made is the signed object (often a

 certificate). The Principal is said to "speak for" the Keyholder.

 SUBJECT: the thing empowered by a certificate or ACL entry. This can

 be in the form of a key, a name (with the understanding that the name

 is mapped by certificate to some key or other object), a hash of some

 object, or a set of keys arranged in a threshold function.

 S-EXPRESSION: the data format chosen for SPKI/SDSI. This is a LISP-

 like parenthesized expression with the limitations that empty lists

 are not allowed and the first element in any S-expression must be a

 string, called the "type" of the expression.

 THRESHOLD SUBJECT: a Subject for an ACL entry or certificate that

 specifies K of N other Subjects. Conceptually, the power being

 transmitted to the Subject by the ACL entry or certificate is

 transmitted in (1/K) amount to each listed subordinate Subject. K of

 those subordinate Subjects must agree (by delegating their shares

 along to the same object or key) for that power to be passed along.

 This mechanism introduces fault tolerance and is especially useful in

 an ACL entry, providing fault tolerance for "root keys".

2. Name Certification

 Certificates were originally viewed as having one function: binding

 names to keys or keys to names. This thought can be traced back to

 the paper by Diffie and Hellman introducing public key cryptography

 in 1976. Prior to that time, key management was risky, involved and

 costly, sometimes employing special couriers with briefcases

 handcuffed to their wrists.

 Diffie and Hellman thought they had radically solved this problem.

 "Given a system of this kind, the problem of key distribution is

 vastly simplified. Each user generates a pair of inverse

 transformations, E and D, at his terminal. The deciphering

 transformation, D, must be kept secret but need never be communicated

 on any channel. The enciphering key, E, can be made public by

 placing it in a public directory along with the user's name and

 address. Anyone can then encrypt messages and send them to the user,

 but no one else can decipher messages intended for him." [DH]

 This modified telephone book, fully public, took the place of the

 trusted courier. This directory could be put on-line and therefore

 be available on demand, worldwide. In considering that prospect,

 Loren Kohnfelder, in his 1978 bachelor's thesis in electrical

 engineering from MIT [KOHNFELDER], noted: "Public-key communication

 works best when the encryption functions can reliably be shared among

 the communicants (by direct contact if possible). Yet when such a

 reliable exchange of functions is impossible the next best thing is

 to trust a third party. Diffie and Hellman introduce a central

 authority known as the Public File."

2.1 First Definition of CERTIFICATE

 Kohnfelder then noted, "Each individual has a name in the system by

 which he is referenced in the Public File. Once two communicants

 have gotten each other's keys from the Public File they can securely

 communicate. The Public File digitally signs all of its

 transmissions so that enemy impersonation of the Public File is

 precluded." In an effort to prevent performance problems, Kohnfelder

 invented a new construct: a digitally signed data record containing a

 name and a public key. He called this new construct a CERTIFICATE.

 Because it was digitally signed, such a certificate could be held by

 non-trusted parties and passed around from person to person,

 resolving the performance problems involved in a central directory.

2.2 The X.500 Plan and X.509

 Ten years after Kohnfelder's thesis, the ISO X.509 recommendation was

 published as part of X.500. X.500 was to be a global, distributed

 database of named entities: people, computers, printers, etc. In

 other words, it was to be a global, on-line telephone book. The

 organizations owning some portion of the name space would maintain

 that portion and possibly even provide the computers on which it was

 stored. X.509 certificates were defined to bind public keys to X.500

 path names (Distinguished Names) with the intention of noting which

 keyholder had permission to modify which X.500 directory nodes. In

 fact, the X.509 data record was originally designed to hold a

 password instead of a public key as the record-access authentication

 mechanism.

 The original X.500 plan is unlikely ever to come to fruition.

 Collections of directory entries (such as employee lists, customer

 lists, contact lists, etc.) are considered valuable or even

 confidential by those owning the lists and are not likely to be

 released to the world in the form of an X.500 directory sub-tree.

 For an extreme example, imagine the CIA adding its directory of

 agents to a world-wide X.500 pool.

 The X.500 idea of a distinguished name (a single, globally unique

 name that everyone could use when referring to an entity) is also not

 likely to occur. That idea requires a single, global naming

 discipline and there are too many entities already in the business of

 defining names not under a single discipline. Legacy therefore

 militates against such an idea.

2.3 X.509, PEM and PGP

 The Privacy Enhanced Mail [PEM] effort of the Internet Engineering

 Task Force [RFC1114] adopted X.509 certificates, but with a different

 interpretation. Where X.509 was originally intended to mean "the

 keyholder may modify this portion of the X.500 database", PEM took

 the certificate to mean "the key speaks for the named person". What

 had been an access control instrument was now an identity instrument,

 along the lines envisioned by Diffie, Hellman and Kohnfelder.

 The insistence on X.509 certificates with a single global root

 delayed PEM's adoption past its window of viability. RIPEM, by Mark

 Riordan of MSU, was a version of PEM without X.509 certificates. It

 was distributed and used by a small community, but fell into disuse.

 MOSS (a MIME-enhanced version of PEM, produced by TIS (www.tis.com))

 made certificate use optional, but received little distribution.

 At about the same time, in 1991, Phil Zimmermann's PGP was introduced

 with a different certificate model. Instead of waiting for a single

 global root and the hierarchy of Certificate Authorities descending

 from that root, PGP allowed multiple, (hopefully) independent but not

 specially trusted individuals to sign a <name,key> association,

 attesting to its validity. The theory was that with enough such

 signatures, that association could be trusted because not all of

 these signer would be corrupt. This was known as the "web of trust"

 model. It differed from X.509 in the method of assuring trust in the

 <name,key> binding, but it still intended to bind a globally unique

 name to a key. With PEM and PGP, the intention was for a keyholder

 to be known to anyone in the world by this certified global name.

2.4 Rethinking Global Names

 The assumption that the job of a certificate was to bind a name to a

 key made sense when it was first published. In the 1970's, people

 operated in relatively small communities. Relationships formed face

 to face. Once you knew who someone was, you often knew enough to

 decide how to behave with that person. As a result, people have

 reduced this requirement to the simply stated: "know who you're

 dealing with".

 Names, in turn, are what we humans use as identifiers of persons. We

 learn this practice as infants. In the family environment names work

 as identifiers, even today. What we learn as infants is especially

 difficult to re-learn later in life. Therefore, it is natural for

 people to translate the need to know who the keyholder is into a need

 to know the keyholder's name.

 Computer applications need to make decisions about keyholders. These

 decisions are almost never made strictly on the basis of a

 keyholder's name. There is some other fact about the keyholder of

 interest to the application (or to the human being running the

 application). If a name functions at all for security purposes, it

 is as an index into some database (or human memory) of that other

 information. To serve in this role, the name must be unique, in

 order to serve as an index, and there must be some information to be

 indexed.

 The names we use to identify people are usually unique, within our

 local domain, but that is not true on a global scale. It is

 extremely unlikely that the name by which we know someone, a given

 name, would function as a unique identifier on the Internet. Given

 names continue to serve the social function of making the named

 person feel recognized when addressed by name but they are inadequate

 as the identifiers envisioned by Diffie, Hellman and Kohnfelder.

 In the 1970's and even through the early 1990's, relationships formed

 in person and one could assume having met the keyholder and therefore

 having acquired knowledge about that person. If a name could be

 found that was an adequate identifier of that keyholder, then one

 might use that name to index into memories about the keyholder and

 then be able to make the relevant decision.

 In the late 1990's, this is no longer true. With the explosion of

 the Internet, it is likely that one will encounter keyholders who are

 complete strangers in the physical world and will remain so. Contact

 will be made digitally and will remain digital for the duration of

 the relationship. Therefore, on first encounter there is no body of

 knowledge to be indexed by any identifier.

 One might consider building a global database of facts about all

 persons in the world and making that database available (perhaps for

 a fee). The name that indexes that database might also serve as a

 globally unique ID for the person referenced. The database entry

 under that name could contain all the information needed to allow

 someone to make a security decision. Since there are multiple

 decision-makers, each interested in specific information, the

 database would need to contain the union of multiple sets of

 information. However, that solution would constitute a massive

 privacy violation and would probably be rejected as politically

 impossible.

 A globally unique ID might even fail when dealing with people we do

 know. Few of us know the full given names of people with whom we

 deal. A globally unique name for a person would be larger than the

 full given name (and probably contain it, out of deference to a

 person's fondness for his or her own name). It would therefore not

 be a name by which we know the person, barring a radical change in

 human behavior.

 A globally unique ID that contains a person's given name poses a

 special danger. If a human being is part of the process (e.g.,

 scanning a database of global IDs in order to find the ID of a

 specific person for the purpose of issuing an attribute certificate),

 then it is likely that the human operator would pay attention to the

 familiar portion of the ID (the common name) and pay less attention

 to the rest. Since the common name is not an adequate ID, this can

 lead to mistakes. Where there can be mistakes, there is an avenue

 for attack.

 Where globally unique identifiers need to be used, perhaps the best

 ID is one that is uniform in appearance (such as a long number or

 random looking text string) so that it has no recognizable sub-field.

 It should also be large enough (from a sparse enough name space) that

 typographical errors would not yield another valid identifier.

2.5 Inescapable Identifiers

 Some people speak of global IDs as if they were inescapable

 identifiers, able to prevent someone from doing evil under one name,

 changing his name and starting over again. To make that scenario

 come true, one would have to have assignment of such identifiers

 (probably by governments, at birth) and some mechanism so that it is

 always possible to get from any flesh and blood person back to his or

 her identifier. Given that latter mechanism, any Certificate

 Authority desiring to issue a certificate to a given individual would

 presumably choose the same, inescapable name for that certificate. A

 full set of biometrics might suffice, for example, to look up a

 person without danger of false positive in a database of globally

 assigned ID numbers and with that procedure one could implement

 inescapable IDs.

 The use of an inescapable identifier might be possible in some

 countries, but in others (such as the US) it would meet strong

 political opposition. Some countries have government-assigned ID

 numbers for citizens but also have privacy regulations that prohibit

 the use of those numbers for routine business. In either of these

 latter cases, the inescapable ID would not be available for use in

 routine certificates.

 There was a concern that commercial Certificate Authorities might

 have been used to bring inescapable names into existence, bypassing

 the political process and the opposition to such names in those

 countries where such opposition is strong. As the (name,key)

 certificate business is evolving today, there are multiple competing

 CAs each creating disjoint Distinguished Name spaces. There is also

 no real block to the creation of new CAs. Therefore a person is able

 to drop one Distinguished Name and get another, by changing CA,

 making these names not inescapable.

2.6 Local Names

 Globally unique names may be politically undesirable and relatively

 useless, in the world of the Internet, but we use names all the time.

 The names we use are local names. These are the names we write in

 our personal address books or use as nicknames or aliases with e-mail

 agents. They can be IDs assigned by corporations (e.g., bank account

 numbers or employee numbers). Those names or IDs do not need to be

 globally unique. Rather, they need to be unique for the one entity

 that maintains that address book, e-mail alias file or list of

 accounts. More importantly, they need to be meaningful to the person

 who uses them as indexes.

 Ron Rivest and Butler Lampson showed with SDSI 1.0 [SDSI] that one

 can not only use local names locally, one can use local names

 globally. The clear security advantage and operational simplicity of

 SDSI names caused us in the SPKI group to adopt SDSI names as part of

 the SPKI standard.

2.6.1 Basic SDSI Names

 A basic SDSI 2.0 name is an S-expression with two elements: the word

 "name" and the chosen name. For example,

 george: (name fred)

 represents a basic SDSI name "fred" in the name space defined by

 george.

2.6.2 Compound SDSI Names

 If fred in turn defines a name, for example,

 fred: (name sam)

 then george can refer to this same entity as

 george: (name fred sam)

2.7 Sources of Global Identifiers

 Even though humans use local names, computer systems often need

 globally unique identifiers. Even in the examples of section 2.6.2

 above, we needed to make the local names more global and did so by

 specifying the name-space owner.

 If we are using public key cryptography, we have a ready source of

 globally unique identifiers.

 When one creates a key pair, for use in public key cryptography, the

 private key is bound to its owner by good key safeguarding practice.

 If that private key gets loose from its owner, then a basic premise

 of public key cryptography has been violated and that key is no

 longer of interest.

 The private key is also globally unique. If it were not, then the

 key generation process would be seriously flawed and we would have to

 abandon this public key system implementation.

 The private key must be kept secret, so it is not a possible

 identifier, but each public key corresponds to one private key and

 therefore to one keyholder. The public key, viewed as a byte string,

 is therefore an identifier for the keyholder.

 If there exists a collision-free hash function, then a collision-free

 hash of the public key is also a globally unique identifier for the

 keyholder, and probably a shorter one than the public key.

2.8 Fully Qualified SDSI Names

 SDSI local names are of great value to their definer. Each local

 name maps to one or more public keys and therefore to the

 corresponding keyholder(s). Through SDSI's name chaining, these

 local names become useful potentially to the whole world. [See

 section 2.6.2 for an example of SDSI name chaining.]

 To a computer system making use of these names, the name string is

 not enough. One must identify the name space in which that byte

 string is defined. That name space can be identified globally by a

 public key.

 It is SDSI 1.0 convention, preserved in SPKI, that if a (local) SDSI

 name occurs within a certificate, then the public key of the issuer

 is the identifier of the name space in which that name is defined.

 However, if a SDSI name is ever to occur outside of a certificate,

 the name space within which it is defined must be identified. This

 gives rise to the Fully Qualified SDSI Name. That name is a public

 key followed by one or more names relative to that key. If there are

 two or more names, then the string of names is a SDSI name chain.

 For example,

 (name (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|) jim therese)

 is a fully qualified SDSI name, using the SHA-1 hash of a public key

 as the global identifier defining the name space and anchoring this

 name string.

2.9 Fully Qualified X.509 Names

 An X.509 Distinguished Name can and sometimes must be expressed as a

 Fully Qualified Name. If the PEM or original X.500 vision of a

 single root for a global name space had come true, this wouldn't be

 necessary because all names would be relative to that same one root

 key. However, there is not now and is not likely ever to be a single

 root key. Therefore, every X.509 name should be expressed as the

 pair

 (name <root key> <leaf name>)

 if all leaf names descending from that root are unique. If

 uniqueness is enforced only within each individual CA, then one would

 build a Fully Qualified Name chain from an X.509 certificate chain,

 yielding the form

 (name <root key> <CA(1)> <CA(2)> ... <CA(k)> <leaf name>).

2.10 Group Names

 SPKI/SDSI does not claim to enforce one key per name. Therefore, a

 named group can be defined by issuing multiple (name,key)

 certificates with the same name -- one for each group member.

3. Authorization

 Fully qualified SDSI names represent globally unique names, but at

 every step of their construction the local name used is presumably

 meaningful to the issuer. Therefore, with SDSI name certificates one

 can identify the keyholder by a name relevant to someone.

 However, what an application needs to do, when given a public key

 certificate or a set of them, is answer the question of whether the

 remote keyholder is permitted some access. That application must

 make a decision. The data needed for that decision is almost never

 the spelling of a keyholder's name.

 Instead, the application needs to know if the keyholder is authorized

 for some access. This is the primary job of a certificate, according

 to the members of the SPKI WG, and the SPKI certificate was designed

 to meet this need as simply and directly as possible.

 We realize that the world is not going to switch to SPKI certificates

 overnight. Therefore, we developed an authorization computation

 process that can use certificates in any format. That process is

 described below in section 6.

 The various methods of establishing authorization are documented

 below, briefly. (See also [UPKI])

3.1 Attribute Certificates

 An Attribute Certificate, as defined in X9.57, binds an attribute

 that could be an authorization to a Distinguished Name. For an

 application to use this information, it must combine an attribute

 certificate with an ID certificate, in order to get the full mapping:

 authorization -> name -> key

 Presumably the two certificates involved came from different issuers,

 one an authority on the authorization and the other an authority on

 names. However, if either of these issuers were subverted, then an

 attacker could obtain an authorization improperly. Therefore, both

 the issuers need to be trusted with the authorization decision.

3.2 X.509v3 Extensions

 X.509v3 permits general extensions. These extensions can be used to

 carry authorization information. This makes the certificate an

 instrument mapping both:

 authorization -> key

 and

 name -> key

 In this case, there is only one issuer, who must be an authority on

 both the authorization and the name.

 Some propose issuing a master X.509v3 certificate to an individual

 and letting extensions hold all the attributes or authorizations the

 individual would need. This would require the issuer to be an

 authority on all of those authorizations. In addition, this

 aggregation of attributes would result in shortening the lifetime of

 the certificate, since each attribute would have its own lifetime.

 Finally, aggregation of attributes amounts to the building of a

 dossier and represents a potential privacy violation.

 For all of these reasons, it is desirable that authorizations be

 limited to one per certificate.

3.3 SPKI Certificates

 A basic SPKI certificate defines a straight authorization mapping:

 authorization -> key

 If someone wants access to a keyholder's name, for logging purposes

 or even for punishment after wrong-doing, then one can map from key

 to location information (name, address, phone, ...) to get:

 authorization -> key -> name

 This mapping has an apparent security advantage over the attribute

 certificate mapping. In the mapping above, only the

 authorization -> key

 mapping needs to be secure at the level required for the access

 control mechanism. The

 key -> name

 mapping (and the issuer of any certificates involved) needs to be

 secure enough to satisfy lawyers or private investigators, but a

 subversion of this mapping does not permit the attacker to defeat the

 access control. Presumably, therefore, the care with which these

 certificates (or database entries) are created is less critical than

 the care with which the authorization certificate is issued. It is

 also possible that the mapping to name need not be on-line or

 protected as certificates, since it would be used by human

 investigators only in unusual circumstances.

3.4 ACL Entries

 SDSI 1.0 defined an ACL, granting authorization to names. It was

 then like an attribute certificate, except that it did not need to be

 signed or issued by any key. It was held in local memory and was

 assumed issued by the owner of the computer and therefore of the

 resource being controlled.

 In SPKI, an ACL entry is free to be implemented in any way the

 developer chooses, since it is never communicated and therefore does

 not need to be standardized. However, a sample implementation is

 documented, as a certificate body minus the issuer field. The ACL

 entry can have a name as a subject, as in SDSI 1.0, or it can have a

 key as a subject. Examples of the latter include the list of SSL

 root keys in an SSL capable browser or the file .ssh/authorized_keys

 in a user's home UNIX directory. Those ACLs are single-purpose, so

 the individual entries do not carry explicit authorizations, but SPKI

 uses explicit authorizations so that one can use common authorization

 computation code to deal with multiple applications.

4. Delegation

 One of the powers of an authorization certificate is the ability to

 delegate authorizations from one person to another without bothering

 the owner of the resource(s) involved. One might issue a simple

 permission (e.g., to read some file) or issue the permission to

 delegate that permission further.

 Two issues arose as we considered delegation: the desire to limit

 depth of delegation and the question of separating delegators from

 those who can exercise the delegated permission.

4.1 Depth of Delegation

 There were three camps in discussing depth of delegation: no control,

 boolean control and integer control. There remain camps in favor of

 each of these, but a decision was reached in favor of boolean

 control.

4.1.1 No control

 The argument in favor of no control is that if a keyholder is given

 permission to do something but not the permission to delegate it,

 then it is possible for that keyholder to loan out the empowered

 private key or to set up a proxy service, signing challenges or

 requests for the intended delegate. Therefore, the attempt to

 restrict the permission to delegate is ineffective and might back-

 fire, by leading to improper security practices.

4.1.2 Boolean control

 The argument in favor of boolean control is that one might need to

 specify an inability to delegate. For example, one could imagine the

 US Commerce Department having a key that is authorized to declare a

 cryptographic software module exportable and also to delegate that

 authorization to others (e.g., manufacturers). It is reasonable to

 assume the Commerce Department would not issue permission to delegate

 this further. That is, it would want to have a direct legal

 agreement with each manufacturer and issue a certificate to that

 manufacturer only to reflect that the legal agreement is in place.

4.1.3 Integer control

 The argument in favor of integer control is that one might want to

 restrict the depth of delegation in order to control the

 proliferation of a delegated permission.

4.1.4 The choice: boolean

 Of these three, the group chose boolean control. The subject of a

 certificate or ACL entry may exercise any permission granted and, if

 delegation is TRUE, may also delegate that permission or some subset

 of it to others.

 The no control argument has logical appeal, but there remains the

 assumption that a user will value his or her private key enough not

 to loan it out or that the key will be locked in hardware where it

 can't be copied to any other user. This doesn't prevent the user

 from setting up a signing oracle, but lack of network connectivity

 might inhibit that mechanism.

 The integer control option was the original design and has appeal,

 but was defeated by the inability to predict the proper depth of

 delegation. One can always need to go one more level down, by

 creating a temporary signing key (e.g., for use in a laptop).

 Therefore, the initially predicted depth could be significantly off.

 As for controlling the proliferation of permissions, there is no

 control on the width of the delegation tree, so control on its depth

 is not a tight control on proliferation.

4.2 May a Delegator Also Exercise the Permission?

 We decided that a delegator is free to create a new key pair, also

 controlled by it, and delegate the rights to that key to exercise the

 delegated permission. Therefore, there was no benefit from

 attempting to restrict the exercise of a permission by someone

 permitted to delegate it.

4.3 Delegation of Authorization vs. ACLs

 One concern with defining an authorization certificate is that the

 function can be performed by traditional <authorization,name> ACLs

 and <name,key> ID certificates defining groups. Such a mechanism was

 described in SDSI 1.0. A new mechanism needs to add value or it just

 complicates life for the developer.

 The argument for delegated authorization as opposed to ACLs can be

 seen in the following example.

 Imagine a firewall proxy permitting telnet and ftp access from the

 Internet into a network of US DoD machines. Because of the

 sensitivity of that destination network, strong access control would

 be desired. One could use public key authentication and public key

 certificates to establish who the individual keyholder was. Both the

 private key and the keyholder's certificates could be kept on a

 Fortezza card. That card holds X.509v1 certificates, so all that can

 be established is the name of the keyholder. It is then the job of

 the firewall to keep an ACL, listing named keyholders and the forms

 of access they are each permitted.

 Consider the ACL itself. Not only would it be potentially huge,

 demanding far more storage than the firewall would otherwise require,

 but it would also need its own ACL. One could not, for example, have

 someone in the Army have the power to decide whether someone in the

 Navy got access. In fact, the ACL would probably need not one level

 of its own ACL, but a nested set of ACLs, eventually reflecting the

 organization structure of the entire Defense Department.

 Without the ACLs, the firewall could be implemented in a device with

 no mass storage, residing in a sealed unit one could easily hold in

 one hand. With the ACLs, it would need a large mass storage device

 that would be accessed not only while making access control decisions

 but also for updating the ACLs.

 By contrast, let the access be controlled by authorization

 certificates. The firewall would have an ACL with one entry,

 granting a key belonging to the Secretary of Defense the right to

 delegate all access through the firewall. The Secretary would, in

 turn, issue certificates delegating this permission to delegate to

 each of his or her subordinates. This process would iterate, until

 some enlisted man would receive permission to penetrate that firewall

 for some specific one protocol, but not have permission to delegate

 that permission.

 The certificate structure generated would reflect the organization

 structure of the entire Defense Department, just as the nested ACLs

 would have, but the control of these certificates (via their issuance

 and revocation) is distributed and need not show up in that one

 firewall or be replicated in all firewalls. Each individual

 delegator of permission performs a simple task, well understood. The

 application software to allow that delegation is correspondingly

 simple.

5. Validity Conditions

 A certificate, or an ACL entry, has optional validity conditions.

 The traditional ones are validity dates: not-before and not-after.

 The SPKI group resolved, in discussion, that on-line tests of various

 kinds are also validity conditions. That is, they further refine the

 valid date range of a certificate. Three kinds of on-line tests are

 envisioned: CRL, re-validation and one-time.

 When validity confirmation is provided by some online test, then the

 issuer of those refinements need not be the issuer of the original

 certificate. In many cases, the business or security model for the

 two issuers is different. However, in SPKI, the certificate issuer

 must specify the issuer of validity confirmations.

5.1 Anti-matter CRLs

 An early form of CRL [Certificate Revocation List] was modeled after

 the news print book that used to be kept at supermarket checkout

 stands. Those books held lists of bad checking account numbers and,

 later, bad credit card numbers. If one's payment instrument wasn't

 listed in the book, then that instrument was considered good.

 These books would be issued periodically, and delivered by some means

 not necessarily taking a constant time. However, when a new book

 arrived, the clerk would replace the older edition with the new one

 and start using it. This design was suited to the constraints of the

 implementation: use of physical books, delivered by physical means.

 The book held bad account numbers rather than good ones because the

 list of bad accounts was smaller.

 An early CRL design followed this model. It had a list of revoked

 certificate identifiers. It also had a sequence number, so that one

 could tell which of two CRLs was more recent. A newer CRL would

 replace an older one.

 This mode of operation is like wandering anti-matter. When the

 issuer wants to revoke a certificate, it is listed in the next CRL to

 go out. If the revocation is urgent, then that CRL can be released

 immediately. The CRL then follows some dissemination process

 unrelated to the needs of the consumers of the CRL. If the CRL

 encounters a certificate it has listed, it effectively annihilates

 that certificate. If it encounters an older CRL, it annihilates that

 CRL also, leaving a copies of itself at the verifiers it encounters.

 However, this process is non-deterministic. The result of the

 authorization computation is at least timing dependent. Given an

 active adversary, it can also be a security hole. That is, an

 adversary can prevent revocation of a given certificate by preventing

 the delivery of new CRLs. This does not require cryptographic level

 effort, merely network tampering.

 SPKI has ruled out the use of wandering anti-matter CRLs for its

 certificates. Every authorization computation is deterministic,

 under SPKI rules.

5.2 Timed CRLs

 SPKI permits use of timed CRLs. That is, if a certificate can be

 referenced in a CRL, then the CRL process is subject to three

 conditions.

 1. The certificate must list the key (or its hash) that will sign

 the CRL and may give one or more locations where that CRL might

 be fetched.

 2. The CRL must carry validity dates.

 3. CRL validity date ranges must not intersect. That is, one may

 not issue a new CRL to take effect before the expiration of the

 CRL currently deployed.

 Under these rules, no certificate that might use a CRL can be

 processed without a valid CRL and no CRL can be issued to show up as

 a surprise at the verifier. This yields a deterministic validity

 computation, independent of clock skew, although clock inaccuracies

 in the verifier may produce a result not desired by the issuer. The

 CRL in this case is a completion of the certificate, rather than a

 message to the world announcing a change of mind.

 Since CRLs might get very large and since they tend to grow

 monotonically, one might want to issue changes to CRLs rather than

 full ones. That is, a CRL might be a full CRL followed by a sequence

 of delta-CRLs. That sequence of instruments is then treated as a

 current CRL and the combined CRL must follow the conditions listed

 above.

5.3 Timed Revalidations

 CRLs are negative statements. The positive version of a CRL is what

 we call a revalidation. Typically a revalidation would list only one

 certificate (the one of interest), although it might list a set of

 certificates (to save digital signature effort).

 As with the CRL, SPKI demands that this process be deterministic and

 therefore that the revalidation follow the same rules listed above

 (in section 5.2).

5.4 Setting the Validity Interval

 Both timed CRLs and timed revalidations have non-0 validity

 intervals. To set this validity interval, one must answer the

 question: "How long are you willing to let the world believe and act

 on a statement you know to be false?"

 That is, one must assume that the previous CRL or revalidation has

 just been signed and transmitted to at least one consumer, locking up

 a time slot. The next available time slot starts after this validity

 interval ends. That is the earliest one can revoke a certificate one

 learns to be false.

 The answer to that question comes from risk management. It will

 probably be based on expected monetary losses, at least in commercial

 cases.

5.5 One-time Revalidations

 Validity intervals of length zero are not possible. Since

 transmission takes time, by the time a CRL was received by the

 verifier, it would be out of date and unusable. That assumes perfect

 clock synchronization. If clock skew is taken into consideration,

 validity intervals need to be that much larger to be meaningful.

 For those who want to set the validity interval to zero, SPKI defines

 a one-time revalidation.

 This form of revalidation has no lifetime beyond the current

 authorization computation. One applies for this on-line, one-time

 revalidation by submitting a request containing a nonce. That nonce

 gets returned in the signed revalidation instrument, in order to

 prevent replay attacks. This protocol takes the place of a validity

 date range and represents a validity interval of zero, starting and

 ending at the time the authorization computation completes.

5.6 Short-lived Certificates

 A performance analysis of the various methods of achieving fine-grain

 control over the validity interval of a certificate should consider

 the possibility of just making the original certificate short-lived,

 especially if the online test result is issued by the same key that

 issued the certificate. There are cases in which the short-lived

 certificate requires fewer signatures and less network traffic than

 the various online test options. The use of a short-lived

 certificate always requires fewer signature verifications than the

 use of certificate plus online test result.

 If one wants to issue short-lived certificates, SPKI defines a kind

 of online test statement to tell the user of the certificate where a

 replacement short-lived certificate might be fetched.

5.7 Other possibilities

 There are other possibilities to be considered when choosing a

 validity condition model to use.

5.7.1 Micali's Inexpensive On-line Results

 Silvio Micali has patented a mechanism for using hash chains to

 revalidate or revoke a certificate inexpensively. This mechanism

 changes the performance requirements of those models and might

 therefore change the conclusion from a performance analysis [ECR].

5.7.2 Rivest's Reversal of the CRL Logic

 Ron Rivest has written a paper [R98] suggesting that the whole

 validity condition model is flawed because it assumes that the issuer

 (or some entity to which it delegates this responsibility) decides

 the conditions under which a certificate is valid. That traditional

 model is consistent with a military key management model, in which

 there is some central authority responsible for key release and for

 determining key validity.

 However, in the commercial space, it is the verifier and not the

 issuer who is taking a risk by accepting a certificate. It should

 therefore be the verifier who decides what level of assurance he

 needs before accepting a credential. That verifier needs information

 from the issuer, and the more recent that information the better, but

 the decision is the verifier's in the end.

 This line of thought deserves further consideration, but is not

 reflected in the SPKI structure definition. It might even be that

 both the issuer and the verifier have stakes in this decision, so

 that any replacement validity logic would have to include inputs from

 both.

6. Tuple Reduction

 The processing of certificates and related objects to yield an

 authorization result is the province of the developer of the

 application or system. The processing plan presented here is an

 example that may be followed, but its primary purpose is to clarify

 the semantics of an SPKI certificate and the way it and various other

 kinds of certificate might be used to yield an authorization result.

 There are three kinds of entity that might be input to the

 computation that yields an authorization result:

 1. <name,key> (as a certificate)

 2. <authorization,name> (as an attribute certificate or ACL entry)

 3. <authorization,key> (as an authorization certificate or ACL

 entry)

 These entities are processed in three stages.

 1. Individual certificates are verified by checking their

 signatures and possibly performing other work. They are then

 mapped to intermediate forms, called "tuples" here.

 The other work for SPKI or SDSI certificates might include

 processing of on-line test results (CRL, re-validation or one-

 time validation).

 The other work for PGP certificates may include a web-of-trust

 computation.

 The other work for X.509 certificates depends on the written

 documentation for that particular use of X.509 (typically tied

 to the root key from which the certificate descended) and could

 involve checking information in the parent certificate as well

 as additional information in extensions of the certificate in

 question. That is, some use X.509 certificates just to define

 names. Others use X.509 to communicate an authorization

 implicitly (e.g., SSL server certificates). Some might define

 extensions of X.509 to carry explicit authorizations. All of

 these interpretations are specified in written documentation

 associated with the certificate chain and therefore with the

 root from which the chain descends.

 If on-line tests are involved in the certificate processing,

 then the validity dates of those on-line test results are

 intersected by VIntersect() [defined in 6.3.2, below] with the

 validity dates of the certificate to yield the dates in the

 certificate's tuple(s).

 2. Uses of names are replaced with simple definitions (keys or

 hashes), based on the name definitions available from reducing

 name 4-tuples.

 3. Authorization 5-tuples are then reduced to a final authorization

 result.

6.1 5-tuple Defined

 The 5-tuple is an intermediate form, assumed to be held in trusted

 memory so that it doesn't need a digital signature for integrity. It

 is produced from certificates or other credentials via trusted

 software. Its contents are the same as the contents of an SPKI

 certificate body, but it might be derived from another form of

 certificate or from an ACL entry.

 The elements of a 5-tuple are:

 1. Issuer: a public key (or its hash), or the reserved word "Self".

 This identifies the entity speaking this intermediate result.

 2. Subject: a public key (or its hash), a name used to identify a

 public key, the hash of an object or a threshold function of

 subordinate subjects. This identifies the entity being spoken

 about in this intermediate result.

 3. Delegation: a boolean. If TRUE, then the Subject is permitted

 by the Issuer to further propagate the authorization in this

 intermediate result.

 4. Authorization: an S-expression. [Rules for combination of

 Authorizations are given below.]

 5. Validity dates: a not-before date and a not-after date, where

 "date" means date and time. If the not-before date is missing

 from the source credential then minus infinity is assumed. If

 the not-after date is missing then plus infinity is assumed.

6.2 4-tuple Defined

 A <name,key> certificate (such as X.509v1 or SDSI 1.0) carries no

 authorization field but does carry a name. Since it is qualitatively

 different from an authorization certificate, a separate intermediate

 form is defined for it.

 The elements of a Name 4-tuple are:

 1. Issuer: a public key (or its hash). This identifies the entity

 defining this name in its private name space.

 2. Name: a byte string

 3. Subject: a public key (or its hash), a name, or a threshold

 function of subordinate subjects. This defines the name.

 4. Validity dates: a not-before date and a not-after date, where

 "date" means date and time. If the not-before date is missing

 from the source credential then minus infinity is assumed. If

 the not-after date is missing then plus infinity is assumed.

6.3 5-tuple Reduction Rules

 The two 5-tuples:

 <I1,S1,D1,A1,V1> + <I2,S2,D2,A2,V2>

 yield

 <I1,S2,D2,AIntersect(A1,A2),VIntersect(V1,V2)>

 provided

 the two intersections succeed,

 S1 = I2

 and

 D1 = TRUE

 If S1 is a threshold subject, there is a slight modification to this

 rule, as described below in section 6.3.3.

6.3.1 AIntersect

 An authorization is a list of strings or sub-lists, of meaning to and

 probably defined by the application that will use this authorization

 for access control. Two authorizations intersect by matching,

 element for element. If one list is longer than the other but match

 at all elements where both lists have elements, then the longer list

 is the result of the intersection. This means that additional

 elements of a list must restrict the permission granted.

 Although actual authorization string definitions are application

 dependent, AIntersect provides rules for automatic intersection of

 these strings so that application developers can know the semantics

 of the strings they use. Special semantics would require special

 reduction software.

 For example, there might be an ftpd that allows public key access

 control, using authorization certificates. Under that service,

 (ftp (host ftp.clark.net))

 might imply that the keyholder would be allowed ftp access to all

 directories on ftp.clark.net, with all kinds of access (read, write,

 delete, ...). This is more general (allows more access) than

 (ftp (host ftp.clark.net) (dir /pub/cme))

 which would allow all kinds of access but only in the directory

 specified. The intersection of the two would be the second.

 Since the AIntersect rules imply position dependency, one could also

 define the previous authorization string as:

 (ftp ftp.clark.net /pub/cme)

 to keep the form compact.

 To allow for wild cards, there are a small number of special S-

 expressions defined, using "*" as the expression name.

 (*)

 stands for the set of all S-expressions and byte-strings.

 In other words, it will match anything. When intersected

 with anything, the result is that other thing. [The

 AIntersect rule about lists of different length treats a

 list as if it had enough (*) entries implicitly appended to

 it to match the length of another list with which it was

 being intersected.]

 (* set <tag-expr>*)

 stands for the set of elements listed in the *-form.

 (* prefix <byte-string>)

 stands for the set of all byte strings that start with the

 one given in the *-form.

 (* range <ordering> <lower-limit>? <upper-limit>?)

 stands for the set of all byte strings lexically (or

 numerically) between the two limits. The ordering

 parameter (alpha, numeric, time, binary, date) specifies

 the kind of strings allowed.

 AIntersect() is normal set intersection, when *-forms are defined as

 they are above and a normal list is taken to mean all lists that

 start with those elements. The following examples should give a more

 concrete explanation for those who prefer an explanation without

 reference to set operations.

 AIntersect((tag (ftp ftp.clark.net cme (* set read write))),

 (tag (*)))

 evaluates to (tag (ftp ftp.clark.net cme (* set read write)))

 AIntersect((tag (* set read write (foo bla) delete)),

 (tag (* set write read)))

 evaluates to (tag (* set read write))

 AIntersect((tag (* set read write (foo bla) delete)),

 (tag read))

 evaluates to (tag read)

 AIntersect((tag (* prefix http://www.clark.net/pub/)),

 (tag (* prefix http://www.clark.net/pub/cme/html/)))

 evaluates to (tag (* prefix http://www.clark.net/pub/cme/html/))

 AIntersect((tag (* range numeric ge #30# le #39#)), (tag #26#))

 fails to intersect.

6.3.2 VIntersect

 Date range intersection is straight-forward.

 V = VIntersect(X, Y)

 is defined as

 Vmin = max(Xmin, Ymin)

 Vmax = min(Xmax, Ymax)

 and if Vmin > Vmax, then the intersection failed.

 These rules assume that daytimes are expressed in a monotonic form,

 as they are in SPKI.

 The full SPKI VIntersect() also deals with online tests. In the most

 straight-forward implementation, each online test to which a

 certificate is subject is evaluated. Each such test carries with it

 a validity interval, in terms of dates. That validity interval is

 intersected with any present in the certificate, to yield a new,

 current validity interval.

 It is possible for an implementation of VIntersect() to gather up

 online tests that are present in each certificate and include the

 union of all those tests in the accumulating tuples. In this case,

 the evaluation of those online tests is deferred until the end of the

 process. This might be appropriate if the tuple reduction is being

 performed not for answering an immediate authorization question but

 rather for generation of a summary certificate (Certificate Result

 Certificate) that one might hope would be useful for a long time.

6.3.3 Threshold Subjects

 A threshold subject is specified by two numbers, K and N [0<K<=N],

 and N subordinate subjects. A threshold subject is reduced to a

 single subject by selecting K of the N subjects and reducing each of

 those K to the same subject, through a sequence of certificates. The

 (N-K) unselected subordinate subjects are set to (null).

 The intermediate form for a threshold subject is a copy of the tuple

 in which the threshold subject appears, but with only one of the

 subordinate subjects. Those subordinate tuples are reduced

 individually until the list of subordinate tuples has (N-K) (null)

 entries and K entries with the same subject. At that point, those K

 tuples are validity-, authorization- and delegation- intersected to

 yield the single tuple that will replace the list of tuples.

Ellison, et al. Experimental [Page 27]

RFC 2693 SPKI Certificate Theory September 1999

6.3.4 Certificate Path Discovery

 All reduction operations are in the order provided by the prover.

 That simplifies the job of the verifier, but leaves the job of

 finding the correct list of reductions to the prover.

 The general algorithm for finding the right certificate paths from a

 large set of unordered certificates has been solved[ELIEN], but might

 be used only rarely. Each keyholder who is granted some authority

 should receive a sequence of certificates delegating that authority.

 That keyholder may then want to delegate part of this authority on to

 some other keyholder. To do that, a single additional certificate is

 generated and appended to the sequence already available, yielding a

 sequence that can be used by the delegatee to prove access

 permission.

6.4 4-tuple Reduction

 There will be name 4-tuples in two different classes, those that

 define the name as a key and those that define the name as another

 name.

 1. [(name K1 N) -> K2]

 2. [(name K1 N) -> (name K2 N1 N2 ... Nk)]

 As with the 5-tuples discussed in the previous section, name

 definition 4-tuples should be delivered in the order needed by the

 prover. In that case, the rule for name reduction is to replace the

 name just defined by its definition. For example,

 (name K1 N N1 N2 N3) + [(name K1 N) -> K2]

 -> (name K2 N1 N2 N3)

 or, in case 2 above,

 (name K1 N Na Nb Nc) + [(name K1 N) -> (name K2 N1 N2 ... Nk)]

 -> (name K2 N1 N2 ... Nk Na Nb Nc)

 With the second form of name definition, one might have names that

 temporarily grow. If the prover is providing certificates in order,

 then the verifier need only do as it is told.

 If the verifier is operating from an unordered pool of tuples, then a

 safe rule for name reduction is to apply only those 4-tuples that

 define a name as a key. Such applications should bring 4-tuples that

 started out in class (2) into class (1), and eventually reduce all

 names to keys. Any naming loops are avoided by this process.

6.4.1 4-tuple Threshold Subject Reduction

 Some of a threshold subject's subordinate subjects might be names.

 Those names must be reduced by application of 4-tuples. The name

 reduction process proceeds independently on each name in the

 subordinate subject as indicated in 6.3.3 above.

 One can reduce individual named subjects in a threshold subject and

 leave the subject in threshold form, if one desires. There is no

 delegation- or authorization-intersection involved, only a validity-

 intersection during name reduction. This might be used by a service

 that produces Certificate Result Certificates [see 6.7].

6.4.2 4-tuple Validity Intersection

 Whenever a 4-tuple is used to reduce the subject (or part of the

 subject) of another tuple, its validity interval is intersected with

 that of the tuple holding the subject being reduced and the

 intersection is used in the resulting tuple. Since a 4-tuple

 contains no delegation or authorization fields, the delegation

 permission and authorization of the tuple being acted upon does not

 change.

6.5 Certificate Translation

 Any certificate currently defined, as well as ACL entries and

 possibly other instruments, can be translated to 5-tuples (or name

 tuples) and therefore take part in an authorization computation. The

 specific rules for those are given below.

6.5.1 X.509v1

 The original X.509 certificate is a <name,key> certificate. It

 translates directly to a name tuple. The form

 [Kroot, (name <leaf-name>), K1, validity]

 is used if the rules for that particular X.509 hierarchy is that all

 leaf names are unique, under that root. If uniqueness of names

 applies only to individual CAs in the X.509 hierarchy, then one must

 generate

 [Kroot, (name CA1 CA2 ... CAk <leaf-name>), K1, validity]

 after verifying the certificate chain by the rules appropriate to

 that particular chain.

6.5.2 PGP

 A PGP certificate is a <name,key> certificate. It is verified by

 web-of-trust rules (as specified in the PGP documentation). Once

 verified, it yields name tuples of the form

 [Ki, name, K1, validity]

 where Ki is a key that signed that PGP (UserID,key) pair. There

 would be one tuple produced for each signature on the key, K1.

6.5.3 X.509v3

 An X.509v3 certificate may be used to declare a name. It might also

 declare explicit authorizations, by way of extensions. It might also

 declare an implicit authorization of the form (tag (*)). The actual

 set of tuples it yields depends on the documentation associated with

 that line of certificates. That documentation could conceptually be

 considered associated with the root key of the certificate chain. In

 addition, some X.509v3 certificates (such as those used for SET),

 have defined extra validity tests for certificate chains depending on

 custom extensions. As a result, it is likely that X.509v3 chains

 will have to be validated independently, by chain validation code

 specific to each root key. After that validation, that root-specific

 code can then generate the appropriate multiple tuples from the one

 certificate.

6.5.4 X9.57

 An X9.57 attribute certificate should yield one or more 5-tuples,

 with names as Subject. The code translating the attribute

 certificate will have to build a fully-qualified name to represent

 the Distinguished Name in the Subject. For any attribute

 certificates that refer to an ID certificate explicitly, the Subject

 of the 5-tuple can be the key in that ID certificate, bypassing the

 construction of name 4-tuples.

6.5.5 SDSI 1.0

 A SDSI 1.0 certificate maps directly to one 4-tuple.

6.5.6 SPKI

 An SPKI certificate maps directly to one 4- or 5- tuple, depending

 respectively on whether it is a name certificate or carries an

 authorization.

6.5.7 SSL

 An SSL certificate carries a number of authorizations, some

 implicitly. The authorization:

 (tag (ssl))

 is implicit. In addition, the server certificate carries a DNS name

 parameter to be matched against the DNS name of the web page to which

 the connection is being made. That might be encoded as:

 (tag (dns <domain-name>))

 Meanwhile, there is the "global cert" permission -- the permission

 for a US-supplied browser to connect using full strength symmetric

 cryptography even though the server is outside the USA. This might

 be encoded as:

 (tag (us-crypto))

 There are other key usage attributes that would also be encoded as

 tag fields, but a full discussion of those fields is left to the

 examples document.

 An ACL entry for an SSL root key would have the tag:

 (tag (* set (ssl) (dns (*))))

 which by the rules of intersection is equivalent to:

 (tag (* set (ssl) (dns)))

 unless that root key also had the permission from the US Commerce

 Department to grant us-crypto permission, in which case the root key

 would have:

 (tag (* set (ssl) (dns) (us-crypto)))

 A CA certificate, used for SSL, would then need only to communicate

 down its certificate chain those permissions allocated in the ACL.

 Its tag might then translate to:

 (tag (*))

 A leaf server certificate for the Datafellows server might, for

 example, have a tag field of the form:

 (tag (* set (ssl) (dns www.datafellows.com)))

 showing that it was empowered to do SSL and to operate from the given

 domain name, but not to use US crypto with a US browser.

 The use of (* set) for the two attributes in this example could have

 been abbreviated as:

 (tag (ssl www.datafellows.com))

 while CA certificates might carry:

 (tag (ssl (*))) or just (tag (*))

 but separating them, via (* set), allows for a future enhancement of

 SSL in which the (ssl) permission is derived from one set of root

 keys (those of current CAs) while the (dns) permission is derived

 from another set of root keys (those empowered to speak in DNSSEC)

 while the (us-crypto) permission might be granted only to a root key

 belonging to the US Department of Commerce. The three separate tests

 in the verifying code (e.g., the browser) would then involve separate

 5-tuple reductions from separate root key ACL entries.

 The fact that these three kinds of permission are treated as if ANDed

 is derived from the logic of the code that interprets the permissions

 and is not expressed in the certificate. That decision is embodied

 in the authorization code executed by the verifying application.

6.6 Certificate Result Certificates

 Typically, one will reduce a chain of certificates to answer an

 authorization question in one of two forms:

 1. Is this Subject, S, allowed to do A, under this ACL and with

 this set of certificates?

 2. What is Subject S allowed to do, under this ACL and with this

 set of certificates?

 The answer to the second computation can be put into a new

 certificate issued by the entity doing the computation. That one

 certificate corresponds to the semantics of the underlying

 certificates and online test results. We call it a Certificate

 Result Certificate.

7. Key Management

 Cryptographic keys have limited lifetimes. Keys can be stolen. Keys

 might also be discovered through cryptanalysis. If the theft is

 noticed, then the key can be replaced as one would replace a credit

 card. More likely, the theft will not be noticed. To cover this

 case, keys are replaced routinely.

 The replacement of a key needs to be announced to those who would use

 the new key. It also needs to be accomplished smoothly, with a

 minimum of hassle.

 Rather than define a mechanism for declaring a key to be bad or

 replaced, SPKI defines a mechanism for giving certificates limited

 lifetimes so that they can be replaced. That is, under SPKI one does

 not declare a key to be bad but rather stops empowering it and

 instead empowers some other key. This limitation of a certificate's

 lifetime might be by limited lifetime at time of issuance or might be

 via the lifetime acquired through an on-line test (CRL, revalidation

 or one-time). Therefore, all key lifetime control becomes

 certificate lifetime control.

7.1 Through Inescapable Names

 If keyholders had inescapable names [see section 2.5, above], then

 one could refer to them by those names and define a certificate to

 map from an inescapable name to the person's current key. That

 certificate could be issued by any CA, since all CAs would use the

 inescapable name for the keyholder. The attribute certificates and

 ACLs that refer to the keyholder would all refer to this one

 inescapable name.

 However, there are no inescapable names for keyholders. [See section

 2.5, above.]

7.2 Through a Naming Authority

 One could conceivably have a governmental body or other entity that

 would issue names voluntarily to a keyholder, strictly for the

 purpose of key management. One would then receive all authorizations

 through that name. There would have to be only one such authority,

 however. Otherwise, names would have to be composed of parts: an

 authority name and the individual's name. The authority name would,

 in turn, have to be granted by some single global authority.

 That authority then becomes able to create keys of its own and

 certificates to empower them as any individual, and through those

 false certificates acquire access rights of any individual in the

 world. Such power is not likely to be tolerated. Therefore, such a

 central authority is not likely to come to pass.

7.3 Through <name,key> Certificates

 Instead of inescapable names or single-root naming authorities, we

 have names assigned by some entity that issues a <name,key>

 certificate. As noted in sections 2.8 and 2.9, above, such names

 have no meaning by themselves. They must be fully qualified to have

 meaning.

 Therefore, in the construct:

 (name (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|) jim)

 the name is not

 "jim"

 but rather

 "(name (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|) jim)"

 This name includes a public key (through its hash, in the example

 above). That key has a lifetime like any other key, so this name has

 not achieved the kind of permanence (free from key lifetimes) that an

 inescapable name has. However, it appears to be our only

 alternative.

 This name could easily be issued by the named keyholder, for the

 purpose of key management only. In that case, there is no concern

 about access control being subverted by some third-party naming

 authority.

7.4 Increasing Key Lifetimes

 By the logic above, any name will hang off some public key. The job

 is then to increase the lifetime of that public key. Once a key

 lifetime exceeds the expected lifetime of any authorization granted

 through it, then a succession of new, long-lifetime keys can cover a

 keyholder forever.

 For a key to have a long lifetime, it needs to be strong against

 cryptanalytic attack and against theft. It should be used only on a

 trusted machine, running trusted software. It should not be used on

 an on-line machine. It should be used very rarely, so that the

 attacker has few opportunities to find the key in the clear where it

 can be stolen.

 Different entities will approach this set of requirements in

 different ways. A private individual, making his own naming root key

 for this purpose, has the advantage of being too small to invite a

 well funded attack as compared to the attacks a commercial CA might

 face.

7.5 One Root Per Individual

 In the limit, one can have one highly protected naming root key for

 each individual. One might have more than one such key per

 individual, in order to frustrate attempts to build dossiers, but let

 us assume only one key for the immediate discussion.

 If there is only one name descending from such a key, then one can

 dispense with the name. Authorizations can be assigned to the key

 itself, in raw SPKI style, rather than to some name defined under

 that key. There is no loss of lifetime -- only a change in the

 subject of the certificate the authorizing key uses to delegate

 authority.

 However, there is one significant difference, under the SPKI

 structure. If one delegates some authorization to

 (name (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|) carl)

 and a different authorization to

 (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|)

 directly, both without granting the permission to delegate, that key

 can delegate at will through <name,key> certificates in the former

 case and not delegate at all in the latter case.

 In the case of key management, we desire the ability to delegate from

 a long lived, rarely used key to a shorter lived, often used key --

 so in this case, the former mechanism (through a SDSI name) gives

 more freedom.

7.6 Key Revocation Service

 In either of the models above, key |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|

 will issue a certificate. In the first model, it will be a

 <name,key> certificate. In the second, it will be an authorization

 certificate delegating all rights through to the more temporary key.

 Either of those certificates might want an on-line validity test.

 Whether this test is in the form of a CRL, a re-validation or a one-

 time test, it will be supplied by some entity that is on-line.

 As the world moves to having all machines on-line all the time, this

 might be the user's machine. However, until then -- and maybe even

 after then -- the user might want to hire some service to perform

 this function. That service could run a 24x7 manned desk, to receive

 phone calls reporting loss of a key. That authority would not have

 the power to generate a new key for the user, only to revoke a

 current one.

 If, in the worst case, a user loses his master key, then the same

 process that occurs today with lost wallets would apply. All issuers

 of authorizations through that master key would need to issue new

 authorizations through the new master key and, if the old master key

 had been stolen, cancel all old authorizations through that key.

7.7 Threshold ACL Subjects

 One can take extraordinary measures to protect root keys and thus

 increase the lifetimes of those keys. The study of computer fault-

 tolerance teaches us that truly long lifetimes can be achieved only

 by redundancy and replacement. Both can be achieved by the use of

 threshold subjects [section 6.3.3], especially in ACL entries.

 If we use a threshold subject in place of a single key subject, in an

 ACL (or a certificate), then we achieve redundancy immediately. This

 can be redundancy not only of keys but also of algorithms. That is,

 the keys in a threshold subject do not need to have the same

 algorithm.

 Truly long lifetimes come from replacement, not just redundancy. As

 soon as a component fails (or a key is assumed compromised), it must

 be replaced.

 An ACL needs to be access-controlled itself. Assume that the ACL

 includes an entry with authorization

 (tag (acl-edit))

 Assume also that what might have been a single root authorization

 key, K1, is actually a threshold subject

 (k-of-n #03# #07# K1 K2 K3 K4 K5 K6 K7)

 used in any ACL entry granting a normal authorization.

 That same ACL could have the subject of an (acl-edit) entry be

 (k-of-n #05# #07# K1 K2 K3 K4 K5 K6 K7)

 This use of threshold subject would allow the set of root keys to

 elect new members to that set and retire old members. In this

 manner, replacement is achieved alongside redundancy and the proper

 choice of K and N should allow threshold subject key lifetimes

 approaching infinity.

8. Security Considerations

 There are three classes of information that can be bound together by

 public key certificates: key, name and authorization. There are

 therefore three general kinds of certificate, depending on what pair

 of items the certificate ties together. If one considers the

 direction of mapping between items, there are six classes: name->key,

 key->name, authorization->name, name->authorization, authorization-

 >key, key->authorization.

 The SPKI working group concluded that the most important use for

 certificates was access control. Given the various kinds of mapping

 possible, there are at least two ways to implement access control.

 One can use a straight authorization certificate:

 (authorization->key)

 or one can use an attribute certificate and an ID certificate:

 (authorization->name) + (name->key)

 There are at least two ways in which the former is more secure than

 the latter.

 1. Each certificate has an issuer. If that issuer is subverted,

 then the attacker can gain access. In the former case, there is

 only one issuer to trust. In the latter case, there are two.

 2. In the second case, linkage between the certificates is by name.

 If the name space of the issuer of the ID certificate is

 different from the name space of the issuer of the attribute

 certificate, then one of the two issuers must use a foreign name

 space. The process of choosing the appropriate name from a

 foreign name space is more complex than string matching and

 might even involve a human guess. It is subject to mistakes.

 Such a mistake can be made by accident or be guided by an

 attacker.

 This is not to say that one must never use the second construct. If

 the two certificates come from the same issuer, and therefore with

 the same name space, then both of the security differentiators above

 are canceled.

References

 [Ab97] Abadi, Martin, "On SDSI's Linked Local Name Spaces",

 Proceedings of the 10th IEEE Computer Security

 Foundations Workshop (June 1997).

 [BFL] Matt Blaze, Joan Feigenbaum and Jack Lacy, "Distributed

 Trust Management", Proceedings 1996 IEEE Symposium on

 Security and Privacy.

 [CHAUM] D. Chaum, "Blind Signatures for Untraceable Payments",

 Advances in Cryptology -- CRYPTO '82, 1983.

 [DH] Whitfield Diffie and Martin Hellman, "New Directions in

 Cryptography", IEEE Transactions on Information Theory,

 November 1976, pp. 644-654.

 [DvH] J. B. Dennis and E. C. Van Horn, "Programming Semantics

 for Multiprogrammed Computations", Communications of the

 ACM 9(3), March 1966.

 [ECR] Silvio Micali, "Efficient Certificate Revocation",

 manuscript, MIT LCS.

 [ELIEN] Jean-Emile Elien, "Certificate Discovery Using SPKI/SDSI

 2.0 Certificates", Masters Thesis, MIT LCS, May 1998,

 <http://theory.lcs.mit.edu/~cis/theses/elien-masters.ps>

 [also .pdf and

 [HARDY] Hardy, Norman, "THE KeyKOS Architecture", Operating

 Systems Review, v.19 n.4, October 1985. pp 8-25.

 [IDENT] Carl Ellison, "Establishing Identity Without

 Certification Authorities", USENIX Security Symposium,

 July 1996.

 [IWG] McConnell and Appel, "Enabling Privacy, Commerce,

 Security and Public Safety in the Global Information

 Infrastructure", report of the Interagency Working Group

 on Cryptography Policy, May 12, 1996; (quote from

 paragraph 5 of the Introduction).

 [KEYKOS] Bomberger, Alan, et al., "The KeyKOS(r) Nanokernel

 Architecture", Proceedings of the USENIX Workshop on

 Micro-Kernels and Other Kernel Architectures, USENIX

 Association, April 1992. pp 95-112 (In addition, there

 are KeyKOS papers on the net available through

 <http://www.cis.upenn.edu/~KeyKOS/#bibliography>).

 [KOHNFELDER] Kohnfelder, Loren M., "Towards a Practical Public-key

 Cryptosystem", MIT S.B. Thesis, May. 1978.

 [LAMPSON] B. Lampson, M. Abadi, M. Burrows, and E. Wobber,

 "Authentication in distributed systems: Theory and

 practice", ACM Trans. Computer Systems 10, 4 (Nov.

 1992), pp 265-310.

 [LANDAU] Landau, Charles, "Security in a Secure Capability-Based

 System", Operating Systems Review, Oct 1989 pp 2-4.

 [LEVY] Henry M. Levy, "Capability-Based Computer Systems",

 Digital Press, 12 Crosby Dr., Bedford MA 01730, 1984.

 [LINDEN] T. A. Linden, "Operating System Structures to Support

 Security and Reliable Software", Computing Surveys 8(4),

 December 1976.

 [PKCS1] PKCS #1: RSA Encryption Standard, RSA Data Security,

 Inc., 3 June 1991, Version 1.4.

 [PKLOGIN] David Kemp, "The Public Key Login Protocol", Work in

 Progress.

 [R98] R. Rivest, "Can We Eliminate Revocation Lists?", to

 appear in the Proceedings of Financial Cryptography

 1998, <http://theory.lcs.mit.edu/~rivest/revocation.ps>.

 [RFC1114] Kent, S. and J. Linn, "Privacy Enhancement for Internet

 Electronic Mail: Part II -- Certificate-Based Key

 Management", RFC 1114, August 1989.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC

 1321, April 1992.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail

 Extensions (MIME) Part One: Format of Internet Message

 Bodies", RFC 2045, December 1996.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail

 Extensions (MIME) Part Two: Media Types", RFC 2046,

 December 1996.

 [RFC2047] K. Moore, "MIME (Multipurpose Internet Mail Extensions)

 Part Three: Message Header Extensions for Non-ASCII

 Text", RFC 2047, December 1996.

 [RFC2065] Eastlake, D. and C. Kaufman, "Proposed Standard for DNS

 Security", RFC 2065, January 1997.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:

 Keyed-Hashing for Message Authentication", RFC 2104,

 February 1997.

 [SDSI] Ron Rivest and Butler Lampson, "SDSI - A Simple

 Distributed Security Infrastructure [SDSI]",

 <http://theory.lcs.mit.edu/~cis/sdsi.html>.

 [SET] Secure Electronic Transactions -- a protocol designed by

 VISA, MasterCard and others, including a certificate

 structure covering all participants. See

 <http://www.visa.com/>.

 [SEXP] Ron Rivest, code and description of S-expressions,

 <http://theory.lcs.mit.edu/~rivest/sexp.html>.

 [SRC-070] Abadi, Burrows, Lampson and Plotkin, "A Calculus for

 Access Control in Distributed Systems", DEC SRC-070,

 revised August 28, 1991.

 [UPKI] C. Ellison, "The nature of a useable PKI", Computer

 Networks 31 (1999) pp. 823-830.

 [WEBSTER] "Webster's Ninth New Collegiate Dictionary", Merriam-

 Webster, Inc., 1991.

Acknowledgments

 Several independent contributions, published elsewhere on the net or

 in print, worked in synergy with our effort. Especially important to

 our work were: [SDSI], [BFL] and [RFC2065]. The inspiration we

 received from the notion of CAPABILITY in its various forms (SDS-940,

 Kerberos, DEC DSSA, [SRC-070], KeyKOS [HARDY]) can not be over-rated.

 Significant contributions to this effort by the members of the SPKI

 mailing list and especially the following persons (listed in

 alphabetic order) are gratefully acknowledged: Steve Bellovin, Mark

 Feldman, John Gilmore, Phill Hallam-Baker, Bob Jueneman, David Kemp,

 Angelos D. Keromytis, Paul Lambert, Jon Lasser, Jeff Parrett, Bill

 Sommerfeld, Simon Spero.

Authors' Addresses

 Carl M. Ellison

 Intel Corporation

 2111 NE 25th Ave M/S JF3-212

 Hillsboro OR 97124-5961 USA

 Phone: +1-503-264-2900

 Fax: +1-503-264-6225

 EMail: carl.m.ellison@intel.com

 cme@alum.mit.edu

 Web: http://www.pobox.com/~cme

 Bill Frantz

 Electric Communities

 10101 De Anza Blvd.

 Cupertino CA 95014

 Phone: +1 408-342-9576

 EMail: frantz@netcom.com

 Butler Lampson

 Microsoft

 180 Lake View Ave

 Cambridge MA 02138

 Phone: +1 617-547-9580 (voice + FAX)

 EMail: blampson@microsoft.com

 Ron Rivest

 Room 324, MIT Laboratory for Computer Science

 545 Technology Square

 Cambridge MA 02139

 Phone: +1-617-253-5880

 Fax: +1-617-258-9738

 EMail: rivest@theory.lcs.mit.edu

 Web: http://theory.lcs.mit.edu/~rivest

 Brian Thomas

 Southwestern Bell

 One Bell Center, Room 34G3

 St. Louis MO 63101 USA

 Phone: +1 314-235-3141

 Fax: +1 314-235-0162

 EMail: bt0008@sbc.com

 Tatu Ylonen

 SSH Communications Security Ltd.

 Tekniikantie 12

 FIN-02150 ESPOO

 Finland

 EMail: ylo@ssh.fi

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to

 others, and derivative works that comment on or otherwise explain it

 or assist in its implementation may be prepared, copied, published

 and distributed, in whole or in part, without restriction of any

 kind, provided that the above copyright notice and this paragraph are

 included on all such copies and derivative works. However, this

 document itself may not be modified in any way, such as by removing

 the copyright notice or references to the Internet Society or other

 Internet organizations, except as needed for the purpose of

 developing Internet standards in which case the procedures for

 copyrights defined in the Internet Standards process must be

 followed, or as required to translate it into languages other than

 English.

 The limited permissions granted above are perpetual and will not be

 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

SPKI Certificate Theory

1

