The ABCDs of Paxos
Replicated state machines
Consensus: a set of processes decide on an input value
Paxos asynchronous consensus algorithm

AP
Abstract Paxos:
generic, non-local version

CP
Classic Paxos:
stopping failures, compare-and-swap

1989: Lamport, Liskov and Oki
DP
Disk Paxos:
stopping failures, read-write

1999: Gafni and Lamport
BP
Byzantine Paxos:
arbitrary failures

1999: Castro and Liskov
The paper is at research.microsoft.com/lampson
Replicated State Machines
Lamport 1978: Time, clocks and the ordering of events …
Cast your problem as a deterministic state machine

Takes client input requests for state transitions, called steps
Performs the steps

Returns the output to the client.

Make n copies or ‘replicas’ of the state machine.

Use consensus to feed all the replicas the same inputs.
Steps must be deterministic, local to replica, atomic (use transactions)

Recover by replaying the steps (like transactions)
Even a read needs a step, unless the result is “as of step n”.
Applications of RSM
Reliable, available data storage system

Airplane flight control

Reflexive: Changing quorums of the consensus algorithm

Issuing a lease:

A lock on part of the state that times out, hence is fault tolerant

Leaseholder can work on its state without consensus

Like any lock, a lease can have modes or be hierarchical

The Idea of Paxos

A sequence of views; get a decision quorum in one of them.
Each view v chooses an anchored value cv: equals any earlier decision.
If a quorum accepts the choice, decision!
Decision is irrevocable, may be invisible, but is any later view’s choice.
Choice is changeable, must be visible

[image: image12.wmf]

to later views

r

u

a

=nil

Close

v

x

Î

anchor

v

Choose

v

c

v

Accept

v

r

v

=c

v

Finish

v

d

a

=r

v

r

u

a

:=

out

c

v

:=

x

r

v

a

:=

c

v

d

a

:=

r

v

for

u < v

Design Methodology

· Communicate only stable predicates: once true always true
· Structure program as a set of atomic actions
· Make actions as non-deterministic as possible: weakest guards

Allows more freedom for the implementation

Makes it clear what is essential

· Separate safety, liveness, and performance

Safety first, then strengthen guards for liveness and scheduling

· Abstraction functions and simulation proofs
Notation
Subscripts and superscripts for function arguments: rva for r(v, a)
State functions used like variables

Actions described like this:

	Name
	Guard
	 State change

	Closev
	cv = nil (x  anchorv
	→cv := x

Failure Model

A set M of processes (machines)
A faulty process can send arbitrary messages: F m
A stopped process does nothing: S m
A failed process is faulty or stopped. Failure doesn’t lose state.
Limits on failure:
ZF
= set of sets of processes that can all be faulty

ZS
= set of sets of processes that can all be stopped

ZFS
= set of sets of processes that can all be failed

Examples:

Fail-stop: n processes, ZF={}, ZS=ZFS=any set of size < (n+1)/2
Byzantine: n processes, ZF = ZS=ZFS=any set of size < (n+1)/3

Intel-Microsoft: nI + nM processes, ZF=any subset of one side
Quorums and Predicates
Quorum: monotonic set of sets of processes: q in (any superset in.

Predicates g. Predicates on processes G, so Gm is a predicate.
A stable predicate once true remains true.

A predicate G holds in a quorum Q: Q#G = {m | Gm (Fm} (Q
Shorthand: Q[rv*=x] for Q#(λ m | rvm = x).
A good quorum is not all faulty: Q~F = {q | q (ZF}

Q and Q′ exclusive: Q quorum for G (no Q′ quorum for its negation.
Means q (q′ (Q~F for any two quorums. Ex: size > (n + f)/2
Lifts local exclusion G1  ~G2 to global: Q#G1  ~Q′#G2
Q+: ensures Q even after failures: q+ – zFS (Q for any q+, zFS
A live quorum has Q+ ≠ {}
Specification

type
X
=
...
values to decide on

var
d
:
(X ({nil}) := nil
Decision

input
:
set X := {}

	Name
	Guard
	 State change

	Input(x)
	
	 input := input  {x}

	Decision: X
	d ≠ nil
	→ret d

	
	
	

	Decide
	d = nil  x  input
	→d := x

The Idea of Paxos

A sequence of views; get a decision quorum in one of them.

Each view v chooses an anchored value cv: equals any earlier decision.

If a quorum accepts the choice, decision!
Decision is irrevocable, may be invisible, but is any later view’s choice.
Choice is changeable, must be visible

[image: image2.wmf]

a

a

a

c

a

a

a

a

a

Close

a

Input

;

Accep

t

a

Finish

a

;

r

a

r

w

a

c

v

r

v

a

OUTPUT

INPUT

a

a

a

C

hoose

STEP

a

c

Anchor

Start

;

Actions

Transmit

Processes

a

a

a

a

normal operation

view change

Abstract Paxos​—AP: State

Non-local
Agents

State functions
View is
[image: image1.wmf]

a

a

a

c

a

a

a

a

a

Close

a

Input

;

Accep

t

a

Finish

a

;

r

a

r

w

a

c

v

r

v

a

OUTPUT

INPUT

a

a

a

C

hoose

STEP

a

c

Anchor

Start

;

Actions

Transmit

Processes

a

a

a

a

normal operation

view change

rv
d
cv
1:
rv1

d 1
Qdec[rv*=x]
x
x
decided
input
2:
rv2

d 2

Qout[rv*=out]
out
nil
out
activev
3:
rv3

d 3

else
nil
nil
open
AP: Data Flow

to later views
[image: image11.wmf]

to later views

r

u

a

=nil

Close

v

x

Î

anchor

v

Choose

v

c

v

Accept

v

r

v

=c

v

Finish

v

d

a

=r

v

r

u

a

:=

out

c

v

:=

x

r

v

a

:=

c

v

d

a

:=

r

v

for

u < v

rua=nil
Closev
x(anchorv
Choosev
cv
Acceptv
rv=cv
Finishv
da=rv

rua:=out

cv:=x

rva:=cv

da:=rv

for u < v

Each value is nil or = the previous one
Client
INPUT x
x(input

[image: image3.wmf]

a

a

a

c

a

a

a

a

a

Close

a

Input

;

Accep

t

a

Finish

a

;

r

a

r

w

a

c

v

r

v

a

OUTPUT

INPUT

a

a

a

C

hoose

STEP

a

c

Anchor

Start

;

Actions

Transmit

Processes

a

a

a

a

normal operation

view change

Example

	
	cv rva rvb rvc
	 cv rva rvb rvc

	View 1

View 2

View 3
	7 7 out out
8 8 out out
9 out out 9
	8 8 out out
9 9 out 9
9 out out 9

	input  anchor4
	= {7, 8, 9} seeing a, b, c
({8} seeing a, b
({9} seeing a, c or b, c
	 {9} no matter what
 quorum we see

Two runs of AP with

agents a, b, c,
two agents in a quorum,

input = {7, 8, 9}
Anchoring

	invariant rv = x  ru = x′ x = x′
	all results agree

	
 x′, u | rv = x  ru = x′ x = x′

=
rv = x  u < v, x′ ≠ x | ~ Qdec[ru*=x′])
(
rv = x  ( u < v | cu = x (Qout[ru*({x,out}])

	assume u<v
rua ({x, out}  ~(rua = x′)

sfunc anchorv
	=
	 {x | ( u < v | cu = x (Qout[ru*({x,out}])}
	

	=
	 {x | ( w | v0 ≤ w < u  cw = x (Qout[rw*({x,out}])}
 {x | cu = x (Qout[ru*({x,out}]}
{x | ( w | u0 < w < v  cw = x (Qout[rw*({x,out}])}
	= anchoru
= X if outu,v

	=
	{x | cu = x} ((anchoru  {x | Qout[ru*({x,out}]})

if outu,v
	since
cu (anchoru

	(
	if outu,v  rua = x then {x} elseif outv0,v then X else {}
	

 where outu,v = ( w | u < w < v  rw = out)
AP: Algorithm
	Startv
	u<v too slow
	→activev := true
	

	Closeva
	activev
	→for all u < v do
 if rua = nil
 then rua := out
	post u<v (rua ≠ nil

 anchorv = {x | cu = x} ((anchoru  {x | Qout[ru*({x,out}]}) if outu,v
	Anchorv
	anchorv ≠ {}
	→no state change
	

	Choosev
	 cva = nil
(x (input (anchorv
	→cv := x
	

	Acceptva
	 rva = nil
(cv ≠ nil
	→rva := cv; Closeva
	

	Finishva
	rv (X
	→da := rv
	

AP: Liveness
Choose must see an element of input (anchorv.
Recall anchorv
	=
	{x | cu = x} ((anchoru  {x | Qout[ru*({x,out}]})
	

	(
	if outu,v  rua = x then {x} elseif outv0,v then X else {}
	

After Closeva, an OK agent a has rua ≠ nil for all u < v.
So if Qout is live, we see either u < v is out, or rua = x for some OK a.
But rua = cu (input (anchoru
If we know a is OK, then rua is what we want
With faults (in BP), we might not know. But if anchoru is visible, that is enough.
Optimizations

Fixed-size agent state:

rwa=

don’t know
xlasta
out

nil

|

|

|
view
v0

vXlasta
vlasta
Successive steps:
Because anchorv doesn’t depend on input, can compute it for lots of steps at once.

This is called a view change
One view change is enough for any number of steps
Can batch steps with one Paxos/batch.

Can run steps in parallel, subject to external consistency.
Disk Paxos—DP

The goal—Replace the conditional writes in Close and Accept with simple writes.
	Acceptva
	 rva = nil (cv ≠ nil
	→rva := cv; Closeva
	

The idea​—Replace rva with rxva and rova.

	Acceptva
	cv ≠ nil
	→rxva := cv; Closeva
	

	Closeva
	activev
	→for all u < v do roua:= out
	

Proof: Keep rva as a history variable. Abstract it to AP’s rva.

This invariant makes it work (sometimes with an extra view).

	rxva =
	
	rova =
	
	rva

	nil
	
	nil
	
	= nil

	nil
	
	out
	
	= out

	x
	
	nil
	
	= x

	x
	
	out
	
	≠ nil

Communication

A process has knowledge T of stable non-local facts

g@m = (Tm (g)

We transmit these facts (note that transmitter k may be failed):
	TransmitFk,m(g)
	g@k  OKm
	→Tm := Tm  (g@k (Fk)
	post (g@k (Fk)@m

A faulty k can transmit anything:
	TransmitFk,m(g)
	Fk  OKm
	→Tm := Tm  (g@k (Fk)
	post (g@k (Fk)@m

A fact known to a Q~F+ quorum is henceforth known to a Q~F quorum of OK agents, and therefore eventually known to everyone.
	Broadcastm(g)
	Q~F+#g  OKm
	→Tm := Tm  g
	post g@m

Implement Transmitk,m by sending messages. It’s fair if k is OK.
This works because the facts are stable.
Classic Paxos​—CP
The goal—Tolerate stopped processes

The idea—Agents are the same as in AP. Use a primary process to:
Implement Choose
Compute an estimate rev of rv
Relay facts among the agents
Do all the scheduling.
So the primary sends activev to agents to enable Closev, collects ra, computes anchor, gets inputs, does Choose, sends cp to agents, collects ra again to compute rev, and broadcasts d.
	Choosep
	 activep  cp = nil
 x  inputp  anchorp
	→cp := x
	

Must have only one cp per view. Get this with
At most one primary per view

Primary chooses at most once per view
AP and CP

[image: image4.wmf]

a

a

a

c

a

a

a

a

a

Close

a

Input

;

Accep

t

a

Finish

a

r

a

c

v

r

v

a

OUTPUT

INPUT

a

a

a

Choose

STEP

a

;

c

Anchor

Start

;

Actions

Transmit

Processes

a

a

a

a

AP

[image: image5.wmf]

Actions

Transmit

Processes

Messages

CP

[image: image6.wmf]

p

i

c

i

a

a

a

a

a

Close

a

Accep

t

a

Fini

s

h

p

;

active

v

r

a

r

w

a

c

p

r

v

a

INPUT

1

®

n*

n*

®

1

1

®

n*

1

®

1

1

®

1

a

a

a

a

a

a

Accept

p

STE

P

p

i

c

i

Ancho

r

p

Close

p

a

p

p

p

Finish

a

;

STE

P

a

1

®

n*

re

v

p

Choose

p

;

Star

t

p

;

n*

®

1

Input

p

;

a

a

a

a

a

a

p

OUTPUT

Primary:
Relay
Choose cv
Estimate rv
Byzantine Paxos—BP
The goal—Tolerate faulty processes

The idea—To get one cv, a self-exclusive quorum Qch must choose it

Still have a primary to propose cv; an OK agent only chooses this
A faulty primary can stop its view from deciding
Every agent needs an estimate ceva of cv and an estimate reva of rv
Invariant: The estimates either are nil or equal the true values.
Every agent also needs its own inputa
	abstract
	cv = if
	Qch[cv*=x]
	then x
	else nil

	sfunc
	ceva = if
	(Qch[cv*=x])@a
	then x
	else nil

	
	anchorva =
	anchoru  {x | Qout[ru*({x,out}]@a}
	if outu,va

	
	anchorvp =
	{x | Q~F+[x(anchorv*]@p}
	

CP and BP

[image: image7.wmf]

Actions

Transmit

Processes

Messages

CP

[image: image8.wmf]

p

c

i

a

a

a

a

a

Close

a

Accep

t

a

Finis

h

p

;

active

v

r

a

r

w

a

c

p

r

v

a

INPUT

1

®

n*

n*

®

1

1

®

n*

1

®

1

1

®

1

a

a

a

a

a

a

Accept

p

STE

P

p

c

i

Ancho

r

p

Close

p

a

p

p

p

Finish

a

;

STE

P

a

1

®

n*

re

v

p

Choose

p

;

Star

t

p

;

n*

®

1

Input

p

;

a

a

a

a

a

a

p

OUTPUT

[image: image9.wmf]

Actions

Transmit

Processes

Messages

B

P

 EMBED Word.Picture.8 [image: image10.wmf]

a

a

a

c

a

a

a

a

a

Close

a

Input

a

,p

;

Choose

a

Accep

t

a

Finish

a

;

r

a

, c

a

r

w

a

c

v

p

c

v

a

r

v

a

OUTPUT

INPUT

n

®

n

1

®

n*

n*

®

n

n

®

n

n

g

®

1

1

®

n

a

a

a

a

a

a

Choos

e

p

STEP

a

c

a

a

a

a

p

a

a

a

p

n*

®

1

anchor

v

a

Star

t

a

;

Anchor

a

Ancho

r

p

Liveness of BP

Choose must see an element of input (anchorv.

Recall anchorv (anchoru  {x | Qout[ru*({x,out}]}
After Closeva, an OK agent a has rua ≠ nil for all u < v.
So if Qout is live, we see either u < v is out, or rua = x for some OK a.

But rua = cu (input (anchoru
Unfortunately, we don’t know whether a is OK.

But we do have Qch[cu*=x], hence Qch[(x (anchoru)@a]
So if Qch is live, x (anchoru is broadcast, which is enough.
So either we eventually see all previous views out, or we see x (anchoru and all views between u and v out.

A faulty client can wreck a view by not sending input to all agents.
Conclusion

Paxos is a practical protocol for fault-tolerant asynchronous consensus.
Paxos is efficient in replicated state machines, which are the best mechanism for most fault-tolerant systems.

Paxos works in a sequence of views,
Each view chooses a value and then seeks a decision quorum.
A later view chooses any possible earlier decision

Abstract Paxos chooses a consensus value non-locally, and then decides by local actions of the agents.

The agents are read-modify-write memories.

Disk Paxos generalizes this to read-write memories.

Classic Paxos uses a primary process to choose.

Byzantine Paxos uses a primary to propose, a quorum to choose.

� EMBED Word.Picture.8 ���

14
Butler Lampson
ABCDs of Paxos: PODC 2001
20

_1059990397.doc

a

Processes

a

a

Transmit

a

 c

a

a

Closea

a

a

a

Actions

Input;

Accepta

Finisha;

ra

rwa

cv

rva

OUTPUT

INPUT

view change

normal operation

a

a

a

Start;

a

a

Anchor

Choose

STEPa

 c

a

_1060019960.doc

a

Processes

a

a

Transmit

a

 c

a

a

Closea

a

a

a

Actions

Input;

Accepta

Finisha

ra

rwa

cv

rva

OUTPUT

INPUT

AP

a

a

a

Start;

a

a

Anchor

Choose

STEPa;

 c

a

_1060020504.doc

a

a

a

a

Starta;

p

 c

a

a

a

Closea

a

a

a

a

Inputa,p;

Choosea

Accepta

Finisha;

ra, ca

rwa

cvp

cva

rva

OUTPUT

anchorva

INPUT

Anchora

ng(1

n(n

n*(n

1(n*

n(n

rwa

1(n

rwa

n*(1

rwa

a

a

a

a

p

a

a

a

Anchorp

a

a

Choosep

STEPa

 c

a

_1060080354.doc

	to later views

rua=nil	Closev	x(anchorv	Choosev	cv	Acceptv	rv=cv	Finishv	da=rv

	rua:=out		cv:=x		rva:=cv 		da:=rv

	for u < v

_1060020250.doc

a

Processes

STEPa

Finisha;

n*(1

a

p

a

 ci

revp

a

a

Closea

a

a

a

a

p

p

1(n*

Accepta

Finishp;

activev

ra

rwa

cp

a

rva

OUTPUT

Startp;

INPUT

Inputp;

1(1

a

a

1(n*

n*(1

rwa

1(n*

1(1

rwa

Choosep;

p

a

a

a

p

a

a

a

Closep

Anchorp

Acceptp

STEPp

ci

_1060019943.doc

a

Processes

STEPa

Finisha;

n*(1

a

p

a

ici

revp

a

a

Closea

a

a

a

a

p

p

1(n*

Accepta

Finishp;

activev

ra

rwa

cp

a

rva

OUTPUT

Startp;

INPUT

Inputp;

1(1

a

a

1(n*

n*(1

rwa

1(n*

1(1

rwa

Choosep;

p

a

a

a

p

a

a

a

Closep

Anchorp

Acceptp

STEPp

ici

_1059940241.doc

Processes

Transmit

Actions

BP

Messages

_1059987933.doc

a

Processes

a

a

Transmit

a

 c

a

a

Closea

a

a

a

Actions

Input;

Accepta

Finisha;

ra

rwa

cv

rva

OUTPUT

INPUT

view change

normal operation

a

a

a

Start;

a

a

Anchor

Choose

STEPa

 c

a

_1059936672.doc

Processes

Transmit

Actions

CP

Messages

