
Reflections on an Operating System Design 1

Reflections on an Operating System Design1,2

Butler W. Lampson and Howard E. Sturgis3

Xerox Palo Alto Research Center

The main features of a general purpose multiaccess operating system developed for the CDC 6400 at
Berkeley are presented, and its good and bad points are discussed as they appear in retrospect. Distinctive
features of the design were the use of capabilities for protection, and the organization of the system into a
sequence of layers, each building on the facilities provided by earlier ones and protecting itself from the
malfunctions of later ones. There were serious problems in maintaining the protection between layers
when levels were added to the memory hierarchy; these problems are discussed and a new solution is
described.

Kev words and Phrases: operating system, protection, capabilities, layering domains, memory hierarchy,
faults

CR Categories: 4.35

1. Introduction

This paper is a backward look at an operating system for the Control Data 6400 called the
Cal system, which the authors and their colleagues designed and built at Berkeley between
l968 and 1971. The system had a number of characteristics that were unique at the time,
and are still quite unusual. Furthermore, its implementation reached a point where it was
able to support a number of users doing substantial programming tasks over a number of
months. As a result, a considerable amount of practical experience was gained with its
novel features. Our distillation of this experience, and our subsequent ideas about how to
avoid the many problems that were encountered in the Cal system, form the main body of
the paper.

We begin by describing the goals of the system and the hardware environment in which it
was built, together with a brief summary of its history and performance. Then we explain
the basic ideas and present the main features. With this background, we point out some
aspects of the design which worked out well, and then delve into some areas which gave
us difficulty and where we now see room for improvement.

1 A version of this paper was presented at the Fifth ACM Symposium on Operating Systems Principles,
The University of Texas at Austin, November 19-21, 1975. A revised version appeared in Comm. ACM
19, 5 (May 1976), pp 251-265. This version was created from that one by scanning and OCR; it may have
errors.
2 Copyright 1976, Association for Computing Machinery, Inc. General permission to republish, but not
for profit, all or part of this material is granted, provided that ACM’s copyright notice is given and that
reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were
granted by permission of the Association for Computing Machinery.
3 Authors’ address: Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304.

Reflections on an Operating System Design 2

1.1 Goals

We wanted to construct a general purpose operating system which would support both
batch and timesharing operation. The system was to run on a commercially available
machine, the Control Data 6400. It had to be reasonably competitive in performance with
Scope, the manufacturer’s existing operating system, although we were willing to tolerate
some loss of batch performance in return for the ability to support interactive users.

We defined three classes of applications that we wanted to support. One was simple
interactive computation; editing, running small BASIC programs and the like. We did a
simple-minded analysis which indicated that it was reasonable to handle 200 simultaneous
users doing this kind of work on the hardware we had at our disposal. A second was the
typical Fortran batch jobs which made up most of the load on the existing Scope system.
We wanted to be able to simulate Scope completely, so that both the translators and
utilities and the user programs could run without change. Finally, we wanted to allow
large and complicated programs to be developed and run at a cost reasonably proportional
to the demands they put on the hardware.

There were also some goals for the properties of the system seen by the sophisticated
programmer. We wanted a protection system uniformly based on capabilities. We intended
to construct the system as a sequence (actually a tree) of layers, each protected from the
ones which followed it, and we wanted users to be able to add layers in the same way, and
to intercept and handle exceptional conditions without incurring any overhead in the
normal case. Among other things, this meant that users had to be able to create new types
of objects.

1.2 Hardware

The system was designed for and implemented on a CDC 6400 with Extended Core Store
(BCS). Our machine had 32K 60-bit words of Central Memory (CM), and 300K 60-bit
words of ECS. Access to ECS is by block transfer to and from CM, with a start up time of
about 3 microseconds and a transfer rate of about 10 words per microsecond. A transfer
can start at any address in ECS and CM, and can be of any length. Note that this device is
not at all like a drum, since the latency is negligible and there is no fixed block size.

The hardware memory protection is provided by two pairs of registers: one pair controls
access to CM and the other access to ECS. One member of each pair is an address
relocation register and the other an address bounds register. There is a single system call
instruction, Central Exchange Jump (CEJ). The CEJ exchanges the contents of all
hardware registers, including the memory protection registers, with some region of CM.

All direct access to input-output devices is provided by ten Peripheral Processing Units
(PPU’s), small computers which can transfer data directly between their own memories
and CM. The PPU’s in turn obtain input-output requests from agreed-upon locations in
CM. The system arranges that user programs never have access to those locations. Only
system code is run in the PPU’s.

Reflections on an Operating System Design 3

1.3 History

Design of the system started in June 1968 with five participants. Coding began in
December 1968, and we demonstrated two terminals editing, compiling, and running
Fortran programs in July 1969, using the system kernel and an improvised file system and
command processor. By October 1969 the system was being used for its own
development, and design of the permanent file system and command processor began. In
April 1971 these were ready. In November 1971 the project was terminated for lack of
funds.

The funds ran out because, after three years of development, the system was neither
efficient enough nor usable enough to be put into service by the computer center. There
were three reasons for this.

First, there were a great many new and untested ideas in the system. Most of them worked
out quite well, but there were still several which caused trouble, either by slowing down
the development of the system or by hurting its performance. Experience with other large
systems containing many new ideas, such as OS/360 or Multics, indicates that it is usually
necessary to implement many parts of the system two or three times before the
performance becomes acceptable. There was no time to do this with Cal.

Second, the management of the project was quite inexperienced, and as a result there were
many times when substantial effort was directed into something which looked interesting,
rather than into something which was really essential for the success of the system. For the
same reason, there were times when implementation revealed major flaws in the design,
but the decision was made, often almost by default, to go ahead anyway, rather than to
redo the design. These incidents usually cost us dearly in the end.

Third, we failed to realize that a kernel is not the same thing as an operating system, and
hence drastically underestimated the work required to make the system usable by ordinary
programmers. The developers of Hydra [16] appear to have followed us down this garden
path.

About a dozen people worked on the system during its life, and a total of about 20 man-
years were invested; this includes all the support software except what was provided by
CDC as part of the Scope system. Except for one part-time adviser, none of these people
had ever participated in the development of an operating system before. There was no
suitable high-level language available for the machine when the project was begun, and
consequently all the programming was done in machine language.

At the end of its development the system could support about 15 users; it was limited by
the shortage of ECS space, not by processor cycles. In the last three months of operation
it was run for at least 8 hours each working day with a fairly continuous load of several
users. During this time there were 18 recorded system crashes, of which 14 were due to
levels of the system above the kernel. 3 were believed to be of hardware origin, and the
cause of one was unknown. The 14 higher-level crashes left the kernel in good working
order, but affected other parts of the system which are necessary to the well-being of
users.

Reflections on an Operating System Design 4

2. Philosophy

Our design was guided by a number of principles, acting either as a framework, or to
direct choices between competing designs. In retrospect, some of these principles appear
to be unsound, especially if applied too rigidly. Later sections of the paper comment on
some of the problems that arose from such rigid application.

The first three principles are crucial to the structure of the system. They involve several
interrelated concepts: domain, object, capability and operation. The three principles should
be read as a whole, since each uses terms defined in the others.

Protection is based on domains. All code outside the system kernel runs within some
protection domain (it is incorrect, but often convenient, to say that the domain itself is
running). The only resources inside the domain are a set of machine registers, a portion of
CM, and a local capability list (c-list). Resources outside the domain can be accessed only
through capabilities stored in the local c-list. A program running within a domain D has
only one way to interact with anything outside D: by invoking an operation on some
objects found in D’s local c-list. Figure 1 illustrates two domains.

0
1
2

n

Registers
P-counter

Local CM

0

l

Local c-list

D1: domain

P1: process

F1: file

F2: file

D2: domain

P2: process

Fig. 1. Domains, capabilities, and objects

Reflections on an Operating System Design 5

The purpose of a domain is to provide a protection context. This implies (among other
things) that it must be possible to completely isolate a domain from undesired external
influences, or in other words, to give it exclusive control over every aspect of its
environment on which its correct functioning depends. Not every domain, of course, will
actually have such exclusive control: in many cases one domain will be cooperating with,
or subordinate to, another one. Nonetheless, the possibility of complete isolation is a
crucial property of the protection system.

The system provides a virtual world composed of objects. Different types of objects are
used to embody different kinds of facilities, i.e. c-lists to contain capabilities, files to
contain data, processes to perform sequential computations, allocation blocks to control
the use of basic resources such as ECS space and CPU time, and so forth. An object can
only be manipulated by invoking an operation, which is itself an object. For each type of
object, there are operations to create and destroy objects of that type, and to read and
modify the state of such objects.

The system changes state only as a result of the activity of a process. For example, a
process may execute a machine instruction that changes the state of the machine registers
of the domain in which it is running, or it may perform an operation on objects in the
domain’s local c-list. An autonomous input-output device is represented in this scheme by
one or more pseudo-processes, which contain the state of the device. These pseudo-
processes then communicate with other processes through event channels and files just
like ordinary processes.

In the Cal system, as in most capability-based systems, objects are intrinsically shareable:
any domain can have access to any object if a capability for the object appears in its local
c-list. It is of course possible for this capability to appear in only one local c-list, but the
structure of the system does not enforce or even encourage such exclusive access. The
only things to which a domain automatically has exclusive access are its CM and its
registers. By contrast, in a virtual machine system such as VM/370 [11], a virtual disk
belongs to a particular machine, and is normally inaccessible to all other machines.

Objects are named by capabilities. A capability is an unforgeable name for (or pointer to)
an object. The system kernel guarantees the integrity of the capability by storing it only in
a c-list, to which non-kernel programs never have direct access. The contents of a c-list
can only be altered by operations that the kernel provides, and these preserve the integrity
of the capabilities stored in the c-list.

A program outside the kernel can name an object only by giving an index in the local c-list
of the domain in which the program is running. For example, in Figure 1, domain D1 can
name the file F1 by the integer 2. The index specifies a capability, which in turn points to
the object. In this paper we usually make no distinction between an object, a capability for
the object, and a c-list index which specifies the capability; it should be obvious from the
context which one is meant. When we speak of an operation returning a capability, we
mean that the operation takes two parameters: a c-list, and an integer that specifies a
position in the c-list where the capability is to be stored.

Reflections on an Operating System Design 6

Objects are defined abstractly. Each object can be accessed only through a small set of
operations. Any design proposal is expected to consist of the following three parts:

• an abstractly specified set of states for an object;

• a set of primitive operations on the object and their effects on the states;

• a representation for the states.

Thus, an object is very much like a protected version of a Simula class [3].

Tile system is built in protected layers. The first layers are simple: The correctness of a
layer must not depend on the correct programming of any later layer; in other words, the
layers are protected. Further, it must be possible to change the implementation of an
earlier layer without reprogramming any later layer. The system can always be extended by
adding another layer. Each new layer defines a new virtual world.

Extensions can be transparent. The most frequently used objects and operations can be
represented directly by the objects and operations of earlier layers. Only if the earlier
layers cannot perform the operation should the later one become involved. This is a rather
strong requirement that had a great deal of impact on the system design.

Any use of a resource should be chargeable to some specific user. There should be no
anonymous use of machine resources. Since a user is to be charged for his use of
resources, this use should be the same if the same program is rerun under different load
conditions.

3. The Cal System Kernel

The actual Cal system is constructed in four layers, not counting domains that implement
the Scope simulator and other specialized services. The description in this paper collapses
the last three layers into one for simplicity, leaving two layers that we will call the kernel
system (described in this section) and the user system (described in the next section).

The kernel defines the first protected layer. it provides what we thought were a minimal
set of facilities for the efficient construction of further protected layers. Everything else
needed by real user programs is provided by the user system. In particular, the user system
extends the memory hierarchy to include the disk, and it provides symbolic names for
objects.

Some knowledge of other systems that implement a memory hierarchy suggested that the
system code for moving representations of objects to and from the disk would be quite
complicated. It must not only deal with the technical aspects of efficient disk input-output,
but also solve the strategic problem of choosing which representations to move. In view of
this, we decided that the kernel would deal only with objects represented in ECS. All
kernel data is stored in ECS or CM. The disk is simply an input/output device to the
kernel system. One attractive consequence of this decision is that the kernel never has to
wait for an input/output operation to complete. Some of the other, less attractive
consequences are explored in Section 8.

Reflections on an Operating System Design 7

3.1 Outline

The kernel system implements the kernel world, which consists of the following eight
types of objects, and about 100 operations which can be performed on them:

kernel files
event channels
allocation blocks
c-lists
labels
operations
processes
types

Domains are not full-fledged kernel objects, but lead a second-class existence within
processes.

In this section we give a brief description of these objects and the operations on them. All
objects have create and destroy operations, which are not mentioned in the individual
descriptions. The objects and operations are summarized in Table I. For more detailed
information, the reader may consult [14]. He should note that in this paper we are using
somewhat different names than are used there.

3.2 Kernel Files

Files provide the primary facility for storing data. A file is a sequence of 60-bit words,
divided into equal size pages, each of which can be present or absent. Figure 2 illustrates
this structure. It was designed to make it convenient for a kernel file to represent a user
file that might be mostly on the disk. The way this is done is discussed in detail in Section
4.2.

contents pages

Kernel file

Fig. 2. A kernel file with five pages, two of which are absent

Operations are available to create and destroy individual pages, and to transfer sequences
of words between consecutive file addresses and consecutive CM addresses within a
domain. Finally, there is a swap operation for exchanging two pages between two files.
The swap action is provided so that kernel files can be transparently extended to user files:
see Section 4.2.

Reflections on an Operating System Design 8

3.3 Event Channels

Event channels are used for interprocess signaling, and to transfer single word messages
called events. Two operations are available: send an event, and get an event. A channel
contains storage for a fixed number of such events, and the send operation returns a failure
indication if the channel is full.

There are four variations of the ‘get an event” operation:

• get an event from a single event channel; if no event is waiting,

return and so indicate,

wait until one is available.

• -get an event from one of several event channels; if no event is waiting on any of them,

return and so indicate,

wait until one is available on one of the channels.

The only way for a process to suspend execution voluntarily is to wait for an event from
an event channel.

3.4 Allocation Blocks

Allocation blocks provide the authority to use kernel system resources, such as ECS space
and CPU time. Creation of an object requires an allocation block with sufficient ECS
space to store the object’s representation. When the object is created, the space is
removed from the allocation block.

An allocation block contains a list of all the objects created on its authority and hence
dependent on it. There is an operation which, given an allocation block, returns a
capability for the nth object dependent on it. This allows the bolder of a capability for an
allocation block to systematically delete the dependent objects and recover the space they
occupy. The dependency relation defines a tree structure on allocation blocks with a
unique root. This root is created at system initialization time with ownership of all the
system resources.

Reflections on an Operating System Design 9

Object Components Operations
File n: integer

data: array [n] of
empty or
page: array of word

read/write (address in CM, address in file, number of words:
integer)

create/destroy page (address in file: integer)
swap page (F, G: file, address in F, address in G: integer)

Event
channel

n: integer
events: array [n] of

event: word
waiting: queue of process

send event (event: word)
get event (if empty: {wait, return})
get event from several channels (if empty:

{wait, return}, list of event channels: c-list)
Allocation
block

ECS space: integer
CPU time: integer
dependents: queue of objects

get capability (object number: integer)
transfer funds (source, dest: allocation block, space, time:

integer)
(all create operations also take an allocation block parameter)

c-list n: integer
contents: array [n] of

empty or
capability =

type: integer
rights: set of rights
value: word

move capability (source, dest: c-list,
source index, dest index: integer,
rights mask: set of rights)
read contents (index: integer)

Type type number: integer create capability (value of new capability: word)
Label value: integer none
Process call stack: array of

domain: label
PC: integer
registers: array [16] of word

account: allocation block
timers: array of integer
set of domain =

name: label
father: label
local c-list: c-list
map: array of map entry =

file: file
address in file: integer
address in CM: integer
number of words: integer
set of error codes

create domain (name, father: label, size of local c-list, size of
map: integer)

send interrupt (target domain: label, value: word)
return (type: {normal, abnormal}, value: word)
return with error (error number: integer)
jump return (number of levels: integer)

Operation nlevels: integer
levels: array [nlevels] of

action =
domain: label or
kernel action: integer

nparams: integer
array [nparams] of

parameter spec =
variable data: empty or
variable cap =

type number: integer
rights: set of rights or

fixed data: word or
fixed cap: capability

copy operation
add level (action: label, number of parameters: integer, array

of parameter specifications)
tighten specification (parameter number: integer, required

rights: set of rights)
fix data part (parameter number: integer, fixed data: word)
fix capability part (parameter number: integer) fixed

capability: capability)

Notes The notation is borrowed from Pascal.
Boldface words stand for objects of the indicated type.
All the operations take an object of the type being described as a parameter, in addition to the

parameters that are shown explicitly.
All objects have create and destroy operations in addition to those listed.

Table I. Cal System Kernel Objects and Operations.

Reflections on an Operating System Design 10

3.5 C-lists and Capabilities

A c-list is a finite sequence of capabilities. A capability is a system maintained,
unforgeable, authorization [5]. Many capabilities contain pointers to the representations of
system maintained objects, such as files and event channels. A capability also contains a
list of the things which can be done on its authority; these are called rights, following
Hydra [15].

A capability has three components:
a type t;
a set of rights r;
a value v.

The type is an integer that identifies the type of object named by the capability. The kernel
system has the eight built-in types listed above, and it also allows new types to be created.
The set of rights r in a capability is a subset of the set R of all possible rights. When a
capability is supplied as a parameter to an operation, the operation can require certain
rights to be present in r: see Section 3.8. Typical rights for a file capability might be read
and write.

The value is simply an integer. Its interpretation depends on the type t. The
implementation of type t can interpret this integer in any way it pleases. Typically the
kernel interprets the value of a capability for a kernel object as a pair (unique name,
index). In this pair the unique name is an integer which uniquely identifies the object in the
set of all objects ever existing in the system. The index points to an entry in a master
object table or MOT, which in turn points to the object. An MOT entry also contains the
unique name of the object, and this unique name is compared against the unique name in
the capability whenever the path from capability to object is followed. Figure 3 illustrates
the scheme.

File
10

1536679
read

C1: c-list

F1: file

24

Type
MOT index

Unique name
Rights

25

26

27

1536679

MOT

10

index

Fig. 3. Capability 25 in c-list C1 points to file F1 through MOT entry 10.

Reflections on an Operating System Design 11

This arrangement has two advantages. First, it is trivial to move objects around in ECS,
since there is only one place in the system where the ECS address of an object can appear,
namely the MOT entry. Second, objects can be deleted without worrying about whether
any capabilities for them remain extant, since any later attempt to use such a capability will
fail the unique name check.

There is an operation for moving a capability from one c-list to another. During this move
it is possible to remove some rights from the capability’s set of rights. It is also possible to
read the contents (t, r, v) of a capability as a set of bits.

3.6 Labels

A label is a global name for equivalent domains in different processes. The implementation
is simply an integer. A capability for a label contains the integer in its value part. The
reason for using labels to name domains is discussed in Section 3.8.

3.7 Processes and Domains

Processes are quite complicated, and contain a number of components most of which are
not accessible as independent objects. The components are a tree of domains, a call stack,
a set of event channel chain pointers, an allocation block to pay for processor cycles, a set
of machine registers, and some timers.

A domain consists of a local c-list, a map, a name that is a label object, a father domain,
and a list of the errors the domain is willing to handle. The map specifies what portions of
CM are to contain what portions of files. When a domain is run, the map is consulted and
the mapped portions of files are copied into the appropriate portion of CM. From time to
time, CM is copied back to the appropriate files. This scheme makes it unnecessary to
have a special object to hold the contents of a domain’s CM, since ordinary files serve this
purpose. We also thought that it would provide a convenient mechanism for sharing data
between domains, as it does in systems with hardware implemented mapping such as
Tenex (see [l]).

Unfortunately, the map mechanism turned out to cause many problems: some of them are
later discussed in Section 6.1.

The domain tree is used to maintain a control relationship among domains. Each domain
has exactly one father, which is his direct controller. There is one root of the tree. This
tree is used to decide which domain should be called when an error occurs (see below),
according to the following rule: choose the nearest ancestor of the domain signaling the
error which has indicated a willingness to handle the error.

Whenever a domain calls on an ancestor, we define a full path, which consists of the
called domain, the caller, and all domains in between in the tree. The CM and local c-list
of the called domain are extended by concatenating the CM’s and local c-lists of all the
domains on the full path. The reason for this is to give a controlling domain direct access
to the memory of a controlled domain. The full path turned out to be a bad idea.

Reflections on an Operating System Design 12

Finally, there is an interrupt facility, which permits a program in one process to get the
attention of a particular domain in another. Its parameter is a label that names the domain
whose attention is desired. The effect is that the named domain, or an ancestor, will be
called as soon as the named domain or a descendant is running. Thus the domain tree is
used to ensure that a domain cannot be interrupted by an inferior domain.

There are operations to send an interrupt, to signal an error, and to create and destroy a
domain. Domains are normally rather static objects, which are created and destroyed much
less often than they are called. In this respect they are similar to Fortran subroutines. By
contrast, the parallel type of object in Hydra [l5], the local name space or LNS, is
normally created to handle a single call, like an instance of an Algol procedure. Because a
Hydra LNS is short-lived and frequently recreated, the prescription for creating it is an
important part of the system; it is called a procedure, and is exactly analogous to an Algol
procedure (as contrasted to an instance of a procedure). In Cal the prescription for
creating a domain, called a domain descriptor, is not even a kernel construct, but is pro-
vided by the user system (see Section 4.6).

The reader should be warned that this neat parallel between Cal and Hydra is confused by
the fact that Hydra procedures also perform the function of Cal operations (described in
the next section); i.e. they authorize transferring control to a domain as well as specifying
how to create it.

3.8 Operations

Operations contain the authority to invoke a computation in some protection context other
than the current domain: either in the kernel, or in some other domain. An operation is
made up of levels, each of which contains two parts:

the action to be performed, i.e. the new protection context in which the computation is
to proceed, and the entry point in that context;

a list of parameter specifications for the parameters which should be passed to that
action.

The action can either be a kernel action or an entry point to a domain. In the latter case,
the domain is named by a label object, and such an object must be presented to construct
an operation which calls on a domain, as well as to create the domain. This global naming
scheme allows operations to be shared between processes. Consider two domains in
different processes, each implementing the same set of operations on the same type of
object. We want the same operations to be usable for calling both domains, and we
therefore need a single name that refers to the proper domain in each process. A label
performs precisely this function. An alternative solution to this problem is the one adopted
by Hydra, which creates the domain only when the operation is invoked.

In order to invoke an operation, the program in a domain calls the system with a CEJ,
specifying the operation and its capability parameters by indices into the domain’s local c-
list, and its data parameters by integers. Figure 4 shows a simple example. If the action of
the operation is a domain, the kernel system searches the set of domains in the process for
one whose name is equal to the label in the operation. Parameters are picked up from the

Reflections on an Operating System Design 13

c-list and CM of the calling domain according to the parameter specifications of the
operation, and placed in the c-list and CM of the called domain. The call stack in the
process is used to store the return location for the call.

read

invoke

0
1
2

n

Registers
PC: 1023

Local CM

0

l

Local c-list

D1: domain

P1: process

F1: file

1
read file
file: read

datum
datum
datum

Number of levels
Action

Parameter specs

O1: operation

level 11023 CEJ(4, 2, ...)

Fig. 4. Domain D1 is about to read from file F1

Each parameter specification determines how a single parameter is to be obtained:
as data in the caller’s CM;
as a capability in the caller’s local c-list;
as fixed data stored in the operation;
as a fixed capability stored in the operation.

A specification for a capability can also specify the type and rights which the actual
parameter must have. An operation with fixed parameters appears to have fewer
parameters to the caller than the called domain. This feature was designed to allow a
general operation to be specialized in a protected way. It can also be used, however, to
seal a capability [12], so that it is accessible only to the domain which gets invoked by the
operation, and not to other domains which merely have a capability for the operation.

This can be done by simply embedding the capability in the operation as a fixed parameter.
It will then be passed to the domain that is called when the operation is invoked, but there
will be no other way to extract it from the operation. In effect, the label which is the action
of the operation is the seal. The Plessey 250 system [4] uses a similar mechanism, but with
the benefit of hardware support. Unfortunately we did not realize while we were building
the Cal system that our operations had this much power.

There are several kinds of return from a domain call, each invoked by an operation:
normal;

Reflections on an Operating System Design 14

abnormal;
return and signal an error from the caller;
return to a specified domain more than one level back on the stack.

When an operation is invoked, the parameters are collected and action taken according to
the first level. When the action returns, it can do so either normally, in which case control
reverts to the caller, or abnormally. In the latter case, if it is the i-th level of the operation
that is returning abnormally, the (i+1)-th level is invoked if it exists. Otherwise control
reverts to the called with a special indication that the return is abnormal. This mechanism
is provided to facilitate transparent extension; a level can be added to an operation to
handle a fault without adding any overhead if the fault does not occur.

There are operations to copy an operation, to tighten the specifications of a parameter, to
supply a fixed value for a parameter, and to add a level to an existing operation. New
levels or new operations can only contain actions to call domains, never kernel actions.

3.9 Types

Type objects authorize the creation of capabilities for non-kernel objects. One operation is
available on a type object; create a capability of that type. It requires two parameters:

a type T
a single word of data

The result is a capability of type T, with all rights present and with the data word as its
value. If such a capability is handed to a random program, that program can never change
the type or the data part. Hence if the capability is later presented, as authority for an
intended action, to a domain which implements the type T, the domain can read the type
and the value in order to determine whether to accept the capability. There is no way such
a capability can be forged, since it cannot be created without access to the type T, and it
cannot be modified once created.

Thus, a type may be thought of as a seal [12] that can be used to seal a single word of
data. This sealing mechanism is not as flexible as the one that uses operations (Section
3.8), but it is much cheaper. It also had the advantage that we understood it while we
were building the system.

3.10 Input-Output

Each input-output device communicates with users of the kernel system using one or more
files and event channels. The device accepts and returns control information, and possibly
small amounts of data, on the event channels. Large amounts of data are deposited in or
taken from the files. The device itself may be thought of as a process, and in fact this
design ensures that a device can always be simulated by an ordinary process, which is nice
for debugging and for compatibility in the face of changes in hardware.

The primary design criterion for the interface presented by a device is that the properties
of the hardware should be preserved as fully as possible. For example, a magnetic tape
appears as a sequence of records of variable length, rather than with some more elaborate
structure of labels and files which would prevent an arbitrary tape from being read or

Reflections on an Operating System Design 15

written. The primary job of the kernel system code that handles a device is to reconcile the
timing characteristics of the device and the response times of the user programs that will
deal with it. Thus in the case of the tape, a number of data transfers can be queued, and
the responses are similarly queued, so that the tape can be run at full speed even though
the user program runs relatively infrequently.

4. The Cal User System

The user system provides a richer collection of objects, and the ability to store object
representations on the disk. Types of objects in the user world include:

all of the kernel types
disk files
access keys
directories
name tags
domain descriptors

All user system objects which are not kernel objects are also called disk objects, because
the user system allows them to be stored on the disk.

When the user system is initialized, it obtains a type capability for each new type of object
it supports. These capabilities are then used to construct capabilities for such objects as
they are needed, as described in Section 3.9.

4.1 Kernel Objects

Any type of kernel object is available to a user with two important restrictions: no kernel
object can be represented on the disk, and no capability for a kernel object can appear in a
directory. The reason for these restrictions is that the kernel views the disk simply as an
input-output device. Hence it is willing to transmit bits to and from the disk. It is not,
however willing to do the same for objects, since it can have no control over the integrity
of the disk representation of an object.

4.2 Disk Files

A disk file Fd has the same structure as a kernel file. However, a portion of a disk file can
reside on the disk and a portion in ECS. The portion in ECS is represented by a kernel file
Fk, as illustrated in Figure 5. An attach operation is available to force a portion of a disk
file to reside in ECS.

Reflections on an Operating System Design 16

B

contents

D

E
pages

User file

B

contents pages

Representing kernel file before
the last page is touched

B

contents
E

pages

Representing kernel file after
the last page is touched

Fig. 5. A user file represented by a kernel file

A capability for the representing kernel file Fk is obtained by applying an open operation
(provided by the user system) to Fd. The user system determines whether Fk already exists,
and if not it constructs an empty kernel file to serve as Fk. A capability for Fk is then
returned.

The disk file read and write operations are multilevel operations which take an Fk as a
parameter; the first level of these operations contains a kernel action. If the portion of Fd

referenced by the read or write is represented in Fk, the operation succeeds immediately
without invoking the user system. If not, an abnormal return occurs which invokes the
second level of the operation, a call on the user system. The user system now performs the
appropriate disk input-output.

Reflections on an Operating System Design 17

A portion of a disk file can also appear in one or more domain maps (Section 3.7). When
this happens, the user system forces into ECS any file pages containing data which is
referenced by a map.

Since a page is the smallest unit of a kernel file which can be created or destroyed, and
since the fact that data in a user file is missing from the representing kernel file can only be
detected by the fault which occurs when a nonexistent kernel file page is referenced,
adding or removing a block from a kernel file must be an atomic operation. The swap
operation mention in Section 3.2 is provided for this purpose.

4.3 Access Keys

An access key is an object containing a single integer that cannot be modified. The integer
is stored in the value part of each capability for the access key. An access key is used like
an ordinary key, which can fit certain locks. Associated with an entry in a directory is a list
of access key values that act as locks. In order to access a given entry in a directory, a
domain must present an access key which fits one of the locks on the entry, i.e. which has
a value equal to one of the lock values [8].

4.4 Directories

A directory consists of a list of entries, each containing a symbolic name, an object
specification and a list of access locks.

The symbolic name is a string of characters. The object specification can be one of three
things:

• an owned entry, containing a pointer to u disk object;

• a hard link, containing a pointer to a disk object not owned by this entry;

• a soft link, containing
a pointer to another directory,
a symbolic name to look up in that directory,
an access key to use as authority.

An access lock is a pair:

• a number to be matched against the value of an access key;

• a set of rights.

Each user object that occupies space on the disk, except for a single root directory, has
exactly one ownership entry in some directory; this entry is constructed when the object is
created. Thus, the directories induce a tree structure on the user objects, which is used for
accounting purposes, much like the allocation blocks of the kernel system (see Section
3.4).

A directory is normally accessed with an operation that requires three arguments: the
directory, a symbolic name, and an access key. It succeeds if an entry is found in the

Reflections on an Operating System Design 18

directory with the specified symbolic name, and the access lock list for that entry contains
an access lock equal to the value of the access key. In this case, a capability is returned for
the object specified in the entry, and with the rights associated with the access lock. The
user system constructs this capability by using one of its type capabilities. If the object
specification in the entry is a soft link, the action is repeated on the directory given in the
link. Otherwise, the operation returns abnormally.

4.5 Name Tags

Since kernel capabilities for kernel objects cannot appear in directories, we invented name
tags to stand for them. Like an access key, a name tag is an object containing a single
unchangeable integer, and the integer is stored in the value part of each capability for the
name tag. The user system maintains a table of correspondences between these integers
and other capabilities, in particular, capabilities for kernel objects. This table is destroyed
each time the system is taken down, or crashes. The system was taken down at least once
a day, so the correspondence was quite ephemeral.

An operation is available to set the correspondence. Moreover, the user system initializes
the table to contain various special objects, such as the files and event channels used to
communicate with input-output devices.

4.6 Domain Descriptors

A domain descriptor contains a prescription for building a user domain: the label value
which names the domain, a specification of the map to be used, and capabilities to be
placed in the domain’s local c-list when it is initialized. The only operation on a domain
descriptor is to invoke it, and the effect is to create the described domain. In particular, the
capabilities specified for the initial local c-list cannot be extracted from the descriptor.
Thus, a calling domain can request the construction of a domain that contains capabilities
for objects that the called domain cannot itself access. Another way of saying this is that a
domain descriptor is a sealed object.

Within the kernel system a domain descriptor could be implemented by an operation which
contains the label and the initial capabilities as fixed parameters (see Section 3.8), and has
an action which invokes a system domain to construct the new domain and pass it the
capabilities. It would still be difficult to store such an operation on the disk, but we never
looked closely at this problem because we did not realize that our operations could be
used in this way. The section on layering below treats this issue in detail. In fact, the user
system represents a domain descriptor as a special kind of directory.

5. Various Successes

The preceding sections have described the Cal system more or less as it actually existed.
The remainder of the paper is devoted to a discussion of things that probably should have
been done differently. Before plunging into this, we will pause to survey things that
worked out well.

Reflections on an Operating System Design 19

In spite of the problems described in Section 8 below, the layering structure worked out
quite well. Among other things, it led to a highly reliable kernel system; during several
months of operation there were at most four crashes that could possibly have been due to
kernel failures.

Capabilities were also very successful. They gave us a consistent and uniform way of
naming objects and controlling access to them, and presented no problems except for the
difficulty of representing them on the disk, which is discussed in detail in Section 8.

The way in which the kernel handled input-output was good. We were able to obtain
performance at least equal to, and often better than, that provided by CDC’s Scope
system. The code in the PPU s was not too complicated, and debugging of the kernel code
was quite easy. Although we had little opportunity to take advantage of the ability to
simulate devices with user processes, that also worked well when it was used.

We were able to implement a complete simulator for the Scope system with about three
man-months of effort, and to run a large variety of programs written for that system
without any changes. This simulator was written entirely as a user program, running first
on top of the kernel system, and later on top of the user system. It required no additions to
these systems, except for a mechanism that fielded the rather peculiar supervisor call used
by Scope.

The extensibility of the kernel was put to a rather severe test by the construction of the
user system, since we did very little design of the user system before specifying and
implementing the kernel. In terms of the functions provided, the kernel met this test quite
well; only a few rather minor changes were made to accommodate the special needs of the
user system. There were some serious problems with maps, discussed in the next Section,
and with moving capabilities out to the disk, discussed in Section 8. Furthermore, the per-
formance was not satisfactory, because the overhead incurred in a few common kernel
operations was too high.

On the whole, however, we were able to extend the kernel with three additional layers
rather successfully. These three layers were parts of the user system; the details of the
division were suppressed in the description above. The Scope simulator was a fourth layer,
but it did not make use of any of the system’s extensibility features, since the programs run
under it of course did not attempt to use directly any of the features of our system.

6. Various Problems

This section describes four areas in which we had fairly serious problems, but which do
not seem to raise any major conceptual issues.

6.1 Maps

Our attempt to simulate mapping hardware by copying blocks of information between CM
and ECS (Section 3.7) worked out badly. First, we were unable to do the simulation
precisely enough, and second, the maps interacted with the extension of kernel files into
disk files in unanticipated and unfortunate ways.

Reflections on an Operating System Design 20

The simulation of mapping hardware breaks down when the same data word appears in
more than one place in the physical CM; the reason should be obvious. Unfortunately,
there is no way to prevent this from happening, by programming convention, with any
system design which allows more than one domain’s CM to be in the physical CM at a
time. A system with more than one CPU will have the same problem.

As a result, the map is actually used only to avoid multiple copies of shared code. For this
purpose it is entirely satisfactory; in fact, it will work well for any shared information
which is never modified. A much simpler mapping scheme than the one we implemented
would be quite adequate for this application.

The second problem arises from the fact that the kernel requires any portion of a file that
appears in a map to actually exist. It is impossible to wait until a program actually refers to
the file and then generate a fault, as most systems which have paging hardware do,
because the hardware provides no way to detect a memory reference to a portion of CM
that happens to correspond to a missing portion of a file.

Because of this requirement, it is necessary for the user system to ensure that every file
page containing any data that appears in a map is actually in ECS. This has two
unfortunate consequences. First, all changes to maps that involve user system (disk) files
must be interpreted by the user system, so that it can keep track of which pages must be
kept in ECS. The kernel system enforces its requirement by preventing any page in a map
from being deleted, but this does not help, since the user system has no way of knowing
when a page is finally removed from all maps without keeping track of all changes. The
double bookkeeping that results is very annoying. The second, equally annoying,
consequence is that the only way to swap out data that appears in a domain’s map is to
destroy the domain.

Both of these problems could be avoided if the kernel complained about missing file pages
only when it actually tried to bring the missing data into CM. Then the user system could
use its best judgment about what to keep in ECS, and any error in judgment would result
in a fault when the affected domain started to run.

This fault could be dealt with in the usual way, by bringing the missing data back from the
disk. To make this work, each domain would have to have associated with it another
domain (presumably belonging to the user system) which the kernel could call to report
the fault.

A third bad consequence of maps as we defined them is that they make it difficult to
access a domain’s CM with simple reads and writes of files, since it is quite difficult in
general to figure out which file blocks correspond to a given section of the CM. This diffi-
culty motivated us to define the full path (Section 3.7) arid make the convention that all
the CM of all the domains in the full path is brought into physical CM simultaneously, so
that it can be easily addressed with the machine’s load and store instructions. The effect of
this scheme is that the maximum size of a domain’s CM is limited to the available physical
CM not occupied by resident system, less the sum of the CM’s of all its ancestors. Since
our physical CM was only 32K, this was very serious, and resulted in many cir-

Reflections on an Operating System Design 21

cumlocutions in the implementation of the user system for the sole purpose of minimizing
the size of domains in the full path.

6.2 Cost of Kernel Operations

The minimum cost of invoking an operation is about 250 µs; this time goes into

• saving and restoring state information;

• following the capability for the operation through the MOT to the actual
representation of the operation in ECS, and interpreting the operation;

• passing one or two parameters.

Operations to send and receive events (mostly for mutual exclusion), and to read and write
small blocks in files, are very frequent in the user system, and in fact take about half the
total execution time for a program which simply reads a disk file at full speed. Changing to
another domain is even more expensive, but is done less frequently.

This problem is to some extent inherent in a system that implements domain changing
entirely in software. In fact, the Cal system can make such changes considerably faster
than other software-only systems, such as the original Multics system or Hydra. The only
real solution is hardware support, as in the current Multics [l3] or the Plessey 250 [4]. We
believe that treating the most common kernel operations as special eases could have
reduced the cost of those operations by about a factor of 2.

6.3 Ceilings

We used allocation blocks to control the use of our most obvious scarce resources: ECS
space and CPU time. Unfortunately, our design had several other resources that were
available in limited quantities, and each of these constituted a ceiling against which the
system as a whole or some user program might bump. Each therefore required some
amount of special handling, and each thus became a source of small design problems and
obscure bugs.

The system allocates a fixed amount of space to the Master Object Table (MOT), in which
almost every kernel object has to have an entry (see Section 3.5). It is therefore possible to
run out of MOT entries without running out of ECS space. The reason for the fixed size is
that capabilities contain indexes into the MOT, which would become invalid if MOT
entries were moved. This means that we cannot shrink the size of the MOT, so we cannot
simply charge the space occupied by an object’s MOT entry against its allocation block, as
we do with the other ECS space it uses.

This problem could be avoided by allowing MOT entries to move, and searching the MOT
with the unique name as a key when the unique name comparison fails. If the search turns
up the entry in another location, the capability can be fixed up so that the cost of the
search is incurred at most once for each copy of the capability. Alternatively, all the
capabilities in the system could be fixed up whenever the MOT is compacted; we had a
religious bias against using such a non-incremental garbage collection technique.

Reflections on an Operating System Design 22

Two other ceilings are the total number of types in the system, limited to about 20,000 by
an accident of the implementation, and the number of message slots in an event channel.

6.4 Accountability

The goal of accounting for all costs and charging them to a specific user was a mistake.
We did not really attain this, but whenever there was a choice, we favored a decision that
would make some cost more accountable. The parallel goal, that a user’s costs should be
predictable, led us to conclude that any system activity charged to a user must be under
the direct control of his program. In other words, the system should not cause implied
activity which may or may not occur. Latent in these two goals is a bias against sharing of
physical resources.

For example, we wanted to charge all CPU time to users. If this is to be feasible, a user
request should directly give rise to a period of system computation, all of which is
necessary to satisfy the request. This concept prejudiced us against automatic memory
management systems, since in such systems there is a lot of activity that is difficult to
identify with particular requests.

The desire to identify the user originating a system computation also influenced our
process design. Since a substantial portion of the system is implemented outside the
kernel, we wanted to associate the execution of such code with particular users. Hence a
process consists of several domains. Certain of these domains contain system programs,
whose execution is automatically associated with the process in which they are embedded.
An alternative approach, which uses a single process to manage each global database,
would avoid many deadlock problems and greatly reduce the cost of mutual exclusion.

6.5 Memory Hierarchy

These same accountability questions arose with respect to ECS space. In a system in
which representations move between ECS and the disk under control of the system, it is
difficult to identify a particular user as responsible for the presence of an object in ECS.
Hence we designed the system so that the user could control the movement of
representations, and so be equitably charged when they were in ECS.

In particular, we transferred data from disk to ECS on demand, but wrote it back or
discarded it immediately thereafter, unless there was an explicit request to leave it around.
As a result, disk files that were frequently referenced by independent programs, such as
directories, accounting files, and commonly used subsystems, were transferred to and from
the disk over and over again. Our reluctance to manage the contents of ECS automatically
was motivated by the accountability considerations just discussed, but we failed to
appreciate how great the cost in performance would be.

7. Domains and Messages

The Cal system contains two separate, though related, mechanisms which provide
isolation between computation: processes, which permit a number of independent
sequential computations to exist, and domains, which permit a number of independent pro-

Reflections on an Operating System Design 23

tection contexts to exist. So that the isolation can be breached in a controlled way, each
mechanism includes facilities for communication: event channels for processes, and
operations for domains. There are many parallels between the two mechanisms, and
especially between the communication facilities.

Considerations of efficiency led us in Cal to make these mechanisms separate, and to
embed domains within processes. It now seems to us, however, that this may have been a
mistake, and that it might be better to identify the notions of domain and process, and to
use messages uniformly for all communication mediated by the system. Space
unfortunately prevents us from expanding on these ideas here, but we hope to do so in a
subsequent paper.

8. Layering

One of the major goals of the Cal system design was to construct a layered system The
code for the system is divided into two large sections. One, the kernel, forms a reasonably
complete system in itself. The other, the user system, runs as user code relative to the
kernel, and in turn implements the system seen by actual users. In this way, the kernel can
operate correctly even if the user system is incorrectly programmed.

The actual design we chose was motivated by a consideration of the memory hierarchy.
Since ECS is too small to contain representations for all existing user objects, some
objects will be represented in ECS and some on the disk. By analogy to paging systems,
objects being referenced by a running process should be represented in ECS. Thus,
representations will move between the disk and ECS.

The total system must do two things:

• represent objects and provide operations on them,

• move object representations between the disk and ECS.

There are two conceivable ways to divide these responsibilities between the two layers:

• The kernel system provides a large virtual memory, swapping pages between the disk
and ECS. The user system then represents objects in this large virtual memory.

• The kernel system provides a representation for objects in ECS only. The user system
moves object representations between ECS and the disk, and uses the kernel system to
represent objects in ECS.

We chose the second alternative.

In order to form a system based on this alternative, the two layers must have certain
properties. These may be summarized as follows:

(1) The kernel is a system in its own right.

(a) It defends itself against an incorrectly programmed user system.

(b) It provides object representations and operations in ECS and CM.

Reflections on an Operating System Design 24

(c) It provides access to the world outside ECS and CM, e.g. the disk, as ordinary
data input-output. The kernel makes no attempt to move object representations to and
from the disk.

(2) The user system is implemented as a layer on top of the kernel.

(a) The user system code runs in domains of kernel processes.

(b) While in ECS, user objects are represented by kernel objects. For efficiency,
frequent actions on user objects are implemented as kernel actions on the representing
kernel objects.

(c) To move an object from ECS to the disk, the user system uses kernel operations to
read the state of the kernel object, and constructs a description of the state of the
represented user object. This description is simply a sequence of bits. Using ap-
propriate kernel operations, the user system writes this description on the disk.
Moving objects from the disk to ECS is done by reversing this process.

8.1 A Difficulty

As we have seen earlier (Section 4.2) we were successful in providing these properties for
disk files. Unfortunately, we were unsuccessful for other objects. We did succeed in
constructing a kernel satisfying (1), and a user system satisfying (2a) and (2b). However,
we could not satisfy (2c). In particular, we were unable to represent c-lists on the disk.
The only objects for which we could give a disk representation were those which had no
direct kernel representation (e.g. directories) and files.

As an illustration of the difficulty we encountered consider c-lists. Assume a user system
has been constructed which allows user c-lists to move to and from the disk. Picture the
user system about to move the representation of a user c-list from the disk to ECS as in
Figure 6. The representation in ECS is to be by means of a kernel c-list. The user c-list
contains capabilities for various user objects. Some of these objects have existing kernel
representations, and some do not. Further, there may exist other user c-lists that contain
capabilities for the user c-list we are moving, and which already have a kernel
representation.

Reflections on an Operating System Design 25

C1: c-list C2: c-list

User world object

Kernel world
before touching

c-list C2

?
c-

Kernel world
after touching

c-list C2

?
c-

Fig. 6. Moving a c-list from disk to ECS

Thus, the user system is about to perform a sequence of kernel actions with the following
possible results:

• A new kernel c-list will exist.

• This new kernel c-list will contain capabilities for some pre-existing kernel objects.

• This new kernel c-list will contain capabilities for some kernel objects that do not
exist.

• A capability in a pre-existing kernel c-list will now point to this new kernel c-list.

One of the kernel actions will certainly be to create the new kernel c-list. With the kernel
we constructed, there is no way for a capability in a pre-existing kernel c-list to point to
this new kernel object, nor for a capability in the new c-list to point to a nonexistent kernel
object. Moreover, we could not conceive of a way to modify the kernel design to permit
this result. The only thing we could think of was to permit the user system to convert an
arbitrary collection of bits into a kernel capability. To include such an operation in the
kernel would violate (1a).

8.2 A Compromise System

We eventually adopted a compromise design in which many objects could not move to the
disk. User objects are essentially divided into two classes, those that can and those that
cannot move to the disk. Reasoning which we no longer accept convinced us that this
division was tolerable.

This reasoning was based partly on the idea that a natural division of the objects already
existed. Some objects must have existence between user sessions, such as files to hold

Reflections on an Operating System Design 26

saved data and programs, and directories for file names and access rights. Other objects
involved in active processing, such as processes and event channels, need not exist
between sessions.

Further, there seem to be two reasons for placing an object representation on the disk. The
first is to save space in fast storage. Since there are relatively few logged in users, we
assumed that objects associated only with such users would occupy a small amount of
space. The second is that the disk is more resistant than ECS or CM to loss of information
due to a hardware or software crash. This resistance is only important for objects intended
to exist between user sessions, i.e. files and directories.

Thus, we perceived no difficulty with having two classes of objects. Files and directories
could migrate to the disk, and all other objects would remain in ECS.

8.3 Further Difficulties

As development of the system proceeded, we ran into a number of problems which arose
only because we had these two classes of objects. Some of the problems we solved with
special purpose mechanisms, and at least one was not solved at all. Examples of special
purpose solutions are name tags (Section 4.5) and domain descriptors (Section 4.6). A
problem for which we had no solution was that, contrary to our expectations, objects with
no disk representation occupied a significant amount of ECS space.

Name tags were introduced to solve the problem that some kernel objects were not as
ephemeral as we bad thought. In particular, the kernel objects used to communicate with
the various input-output devices (Section 3.10) were reconstructed essentially the same
each time the system was restarted. Moreover, access to these devices was controlled by
controlling access to the interface kernel objects. Hence we provided name tags as objects
which could stand for kernel objects and could appear in directories.

Domain descriptors were introduced to provide protected prescriptions or templates for
constructing domains. Since operations were not representable on the disk, and hence
were ephemeral, it never occurred to us to use operations for this purpose.

8.4 Other Systems

In Cal, the kernel provides an internal (ECS) representation, while the user system
provides an external (disk) representation. This same division can appear in other
contexts. For example, consider a system designed to run on several computers that are
interconnected by a network. Suppose this system is to implement objects that move from
computer to computer. Further, suppose it is desirable to have a local system on each
individual computer that can defend itself against mishaps on the other computers. The
relationship between this local system and the global system is similar to the relationship in
Cal between the kernel and the user systems. That is, the objectives stated earlier for
layering can be reinterpreted in this context. In fact, (1a) must be even stronger since the
local system must defend itself against incorrectly transmitted object descriptions.

Reflections on an Operating System Design 27

8.5 A Single Class of Objects

Recently, we have realized that it is possible to construct a user system that provides a
single class of objects, and satisfies the objectives stated earlier. This scheme requires
modifications to the kernel which come close to violating objective (1a), without actually
doing so.

The first modification is to allow each kernel object a new possible state, inactive. An
inactive object contains no other state information, not even a type. The create operations
are augmented by an operation to convert an inactive object into an active object of a
specified type. The destroy operations are augmented by an operation to deactivate an
object. (it is now possible to change the type of a kernel object, by first deactivating it, and
then activating it with the new type.)

The second modification is to introduce an operation for swapping the state of two kernel
objects, one of which is inactive. This will permit the user system to construct a kernel
representation of an object in stages, while making the construction appear atomic to user
programs. The Cal system already has a similar operation for file pages (Section 3.2).

The third modification is to introduce an operation for creating a capability. To this end,
the space of kernel objects is divided into regions; a capability for a region authorizes the
creation of objects in that region. The capability creating operation takes a region, a type,
an integer that specifies the desired value, and bits that specify the rights.

Dividing the object space into two regions is sufficient to protect the kernel. One region
contains the kernel created objects such as those used for input/output interfaces. The
other region contains objects created on behalf of the user system. No capability for the
first region exists. For generality we might also introduce an operation to create a sub-
region of a given region, so the construction can be applied recursively.

It should be observed that this new ability to create arbitrary capabilities does not
substantially increase the powers available to a user system. In Cal, the user system has
available to it an allocation block from which all kernel objects created on behalf of the
user system are dependent. The kernel provides an operation that returns a capability for
any object authorized by such an allocation block. We have simply extended this
fabrication power to capabilities for all objects, active or inactive, in a given region.

Implementation of these changes should not be difficult. An object is identified by its
unique name, and the MOT index in the capability is used only for efficiency. An inactive
object has no representation and no MOT entry. A request to activate an inactive object
results in the selection of an arbitrary MOT index for the representation. The method
described in Section 6.3 for moving MOT entries is used to ensure that already existing
capabilities for the object will remain valid. If no MOT entry with the specified unique
name can be found, then the named object must be inactive. In this case, the kernel action
makes an abnormal return, just as in the case of a missing file page (Section 4.2). Finally,
the regions can be implemented as ranges in the value of the unique name.

With this new kernel it is possible to design a user system which can move all objects to
and from the disk. An inactive kernel object is used to represent a user object whose

Reflections on an Operating System Design 28

actual representation is on the disk. Consider again the problem of moving a user c-list X
from disk to ECS. The disk representation Xd includes the kernel unique name for X, as
well as a description of each capability in X. Since X is on the disk, the kernel object Xk

used to represent it is inactive.

The user system proceeds by creating a temporary c-list C. It then examines the
descriptions of the capabilities in Xd. For each such description cd it constructs an
appropriate capability ck which it puts into C. If cd is for a kernel object in the second
region (user system created kernel objects), the user system fabricates ck using the
capability creating operation. If cd is in the first region (kernel system created objects),
then the user system obtains ck from a master c-list of kernel constructed objects, being
careful to remove any rights which cd does not call for. Finally, the user system swaps the
states of C and X.

9. Conclusion

We have outlined the design of a layered, capability-based operating system for the
Control Data 6400. Some aspects of the design were quite successful: the use of
capabilities, the idea of protected layering, the conversion of input-output devices into
processes with a minimum of interpretation. Some aspects were definitely bad: the attempt
to provide the illusion of a mapped address space on unsuitable hardware, and the way in
which the disk was incorporated into the memory hierarchy. The system was too large and
too slow, but it was quite reliable and did a great deal, considering the amount of work
that was put into it.

We have discussed several areas in which improvements in the design now seem to us to
be possible. The most important of these is the problem of extending a layered system to
include a new level of memory, which we now believe can be done in a quite general way.

Acknowledgments.

Parts of the system design were done by Bruce Lindsay, Paul McJones, David Redell,
Charles Simonyi, and Vance Vaughan. A number of other people made important
contributions to the implementation. Jim Gray and Jim Morris contributed valuable advice
and some user system facilities. The project was supported by the Computer Center of the
University of California at Berkeley. We are indebted to numerous readers of early drafts
of this paper, and to the referees, for whatever clarity it now has.

References
1. Bobrow, D.G., et at. Tenex.. a paged time-sharing system for the PDP-10. Comm. ACM 15, 3 (March

1972), 135-143.

2. Brinch Hansen, P. The nucleus of a multiprogramming system. Comm. ACM 13, 4 (April 1970), 238-
241, 250.

3. Dahl, 0-J., and Hoare, C.A.R. Hierarchical program structures. In Structured Programming, Academic
Press, New York, 1972.

4. England, D.M. Capability concept, mechanisms and structure in system 250. Symp. on Protection in
Operating Systems. IRIA, Roquencourt 78150 Le Chesnay, France, Aug.1974, 68-82.

Reflections on an Operating System Design 29

5. Fabry, R.S. Capability-based addressing. Comm. ACM 17, 7 (July 1974), 403-412.

6. Gray, J. et al. The control structure of an operating system. IBM Research Rep. RC 3949, Watson
Research Center, Yorktown Heights, N.Y., July 1972.

7. Lampson, B.W., et al. A user machine in a time-sharing system. Proc. IEEE 54, 12 (Dec.1966), 1766-
1774.

8. Lampson, B.W. Dynamic protection structures. AFIPS Conf. Proc. 35 (1969 FJCC), AFIPS Press,
Montvale, N.J. 1969, 27-28.

9. Lampson, B.W. On reliable and extendable operating systems. State of the Art Report, Vol.1, Infotech
Ltd., Maidenhead, Berkshire, England, 1971.

10. Lampson, B.W., et al. On the transfer of control between contexts. In Lecture Notes on Computer
Science 19, Springer-Verlag, Berlin, 1974.

11. Meyer, R.A., and Seawright, L.H. A virtual machine time sharing system. IBM Systems J. 9, 3 (1970),
199-218.

12. Morris, J.H. Protection in programming languages. Comm. ACM 16, 1 (Jan. 1973), 15-21.

13. Schroeder, M. D., and Saltzer, J.H. A hardware architecture for implementing protection rings.
Comm. ACM 15, 3 (March 1972), 157-170.

14. Sturgis, H.E. A Post-mortem for a time-sharing system. Ph.D. Thesis, U. of California, Berkeley, and
Rep. CSL 74-1, Xerox Research Center, Palo Alto, Calif., Jan.1974.

15. Wulf, w., et al. Hydra The kernel of a multiprocessor operating system. Comm. ACM 17, 6 (June
1974), 337-345.

16. Wulf, W., et al. Overview of the Hydra operating system development. Operating Systems Rev. 9, 5
(Nov. 1975), 122-131.

