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Introduction 

Euclid is a programming language evolved from Pascal 
[Wir th  1971] by a series of  changes intended to make it more 
suitable for verification and for system programming. We 
expect many of these changes to improve the reliability of the 
programming process, firstly by enlarging the class of errors 
that can be detected by the compiler, and secondly by making 
explicit in the program text more of the information needed 
for understanding and maintenance. In addition, we expect 
that effort  expended in program verification will directly 
improve program reliability. Although Euclid is intended for 
a rather restricted class of applications, much of what we have 
done could surely be extended to languages designed for  more 
general purposes. 

Like all designs, Euclid represents a compromise among 
conflicting goals, reflecting the skills, knowledge, and tastes 
(i.e., prejudices) of its designers. Euclid was conceived as an 
attempt to integrate into a practical language the results of 
several recent developments in programming methodology and 
program verification. As Hoare [1973] has pointed out, it is 
considerably more diff icult  to design a good language than it 
is to select one's favorite set of good language features or to 
propose new ones. A language is more than the sum of its 
parts, and the interactions among its features are often more 
important  than any feature considered separately. Thus this 
paper does not present many new language features. Rather, 
it discusses several aspects of our design that, taken together, 
should improve the reliability of programming in Euclid. 

We believe that the goals of reliability, 
understandability, and verifiability are mutually reinforcing. 
We never consciously sacrificed one of these in Euclid to 
achieve another. We had a tangible measure only for the 
third (namely, our ability to write reasonable proof rules 
[London et al. 1977]), so we frequently used it as the 
touchstone for all three. Much of this paper is devoted to 
decisions motivated by the problems of verification. 

Another important goal of Euclid, the construction of 
acceptably efficient system programs, did not seem attainable 
without some sacrifices in the preceeding three goals. Much 

of the language design effort  was expended in f inding ways to 
allow the precise control of machine resources that seemed to 
be necessary, while narrowly confining the attendant losses of 
reliability, understandability, and verifiability. These aspects 
of the language are discussed in more detail by [Barnard and 
Elliott 1977]. The focus here is on features that contribute tO 
reliability. 

Goals, History, And Relation To Pascal 

The chairman originally charged the committee as 
follows: "Let me outline our charter as I understand it. We 
are being asked to make minimal changes and extensions to 
Pascal in order to make the resulting language one that would 
be suitable for  systems programming while retaining those 
characteristics of the language that are attractive for good 
programming style and verification. Because it is highly 
desirable that the language and appropriate compilers be 
available in a short time, the language definition effort  is to 
be quite limited: only a month or two in duration. 
Therefore, we should not attempt to design a significantly 
different  language, for that, while highly desirable, is a 
research project in itself. Instead, we should aim at a 'good' 
result, rather than the superb." [Popek 1976] We defer to the 
Conclusions a discussion of our current feelings about these 
goals and how well we have met them. 

The design of Euclid took place at four two-day 
meetings of the authors in 1976, supplemented by a great deal 
of individual effort  and uncounted Arpanet messages. 
Almost all of the basic changes to Pascal were agreed upon 
during the first meeting: most of the effort  since then has 
been devoted to smoothing out unanticipated interactions 
among the changes and to developing a suitable exposition of  
the language. Three versions of tile Euclid Report have been 
widely circulated for comment and criticism; the most recent 
appeared in the February 1977 Sigplan Notices [Lampson et 
al. 1977]. Proof rules are currently being prepared for 
publication [London et al. 1977]. 
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The System Development Corporation is currently 
implementing Euclid [Lauer 1977]. Since the 
implementation is incomplete and no sizable Euclid programs 
have been written, our expectations are still untested. Further 
experience may dictate changes in the language. 

We developed Euclid by modifying Pascal only where we 
saw "sufficient reason." We see it as a (perhaps eccentric) step 
along one of the main lines of current programming language 
development: transferring more and more of the work of 
producing a correct program, and verifying that it is 
consistent with its specification, from the programmer and 
the verifier (human or mechanical) to the language and its 
compiler. 

Our changes to Pascal generally took the form of 
restrictions, which allow stronger statements about the 
properties of programs to be based on the rather superficial, 
but quite reliable, analysis that the compiler can perform. In 
some cases, we introduced new constructions whose meaning 
could be explained by expanding them in terms of existing 
Pascal constructions. These were not merely "syntactic 
sugaring": we had to introduce them, rather than leaving the 
expansion to the programmer, because the expansion would 
have been forbidden by our restrictions. Because the new 
constructions were sufficiently restrictive in some other way, 
breaking our own restrictions in these contolled ways did not 
break the protections they offered. 

The main differences between Euclid and Pascal are 

Visibility o f  names: Euclid provides explicit control 
over the visibility of names by requiring the program 
to list all the names imported into a routine (i.e., 
procedure or funct ion)  or module body, or exported 
from a module. The imported names must be 
accessible in every scope in which the routine or 
module name is used. 

Variables: Euclid guarantees that two names in the 
same scope can never refer to the same or overlapping 
variables. There is a single, uniform mechanism for 
binding a name to a variable in a procedure call, on 
block entry (replacing the Pascal with statement), or in 
a variant record discrimination. 

Pointers. The avoidance of overlapping is extended to 
pointers by allowing dynamic variables to be 
partitioned into collections, and guaranteeing that two 
pointers into different  collections can never point  to 
overlapping variables. 

Storage allocation: The program can control the 
allocation of storage for dynamic variables explicitly, 
in a way that narrowly confines knowledge about the 
allocation scheme used and opportunities for making 
type errors. It is also possible to declare that the 
dynamic variables in a collection should be 
reference-counted and automatically deallocated when 
no pointers to them remain. 

Types: Type declarations are generalized to allow 
formal parameters, so that arrays can have bounds 
that are fixed only when they are allocated, and 
variant records can be handled in a type-safe manner. 
Records are generalized to include constant 
components. 

Modules: A new type-constructor, module, provides a 
mechanism for packaging a collection of logically 
related declarations (including variables, constants, 
routines, and types) together with initialization and 
finalization components that are executed whenever 
instances of the type are created or destroyed. This 
provides some of the advantages of abstract data types. 

Constants: Euclid defines a constant to be a literal or 
a name whose value is fixed throughout the scope in 
which it is declared, but not necessarily at compile 

time. A constant whose value is fixed at compile t ime 
(as in Pascal) is called a manifest constant. 

For statement~ The parameter of the for statement is 
a controlled constant in Euclid. A module can be 
used as a generator to enumerate a sequence of values 
for  the controlled constant. 

Loopholes: Features of the underlying machine can be 
accessed, and the type-checking can be overridden, in 
a controlled way. Except for these explicit loopholes, 
Euclid is designed to be type-safe. 

Assertions: The syntax allows assertions to be 
supplied at convenient points to assist in verification 
and to provide useful documentation. Some assertions 
can be compiled into run- t ime checks to assist in the 
debugging of programs whose verification is 
incomplete. 

Deletions. Several Pascal features have been omitted 
from Euclid: input-output,  real numbers, 
mult i -dimensional  arrays, labels and go to's, and 
functions and procedures as parameters. 

The only new features which can make it hard to convert 
a Euclid program into a valid Pascal program by 
straightforward rewriting are parameterized type declarations, 
storage allocation, finalization, and some of the loopholes. 

The balance of this paper presents the motivations and 
consequences of several of the changes. 

Verification And Legality 

One of our fundamental  assumptions is that (in 
principle) all Euclid programs are to be verified before use. 
That  is, we expect formal proofs of the consistency between 
programs and their specifications. These proofs may be 
either manual or automatic; we expect similar considerations 
to apply in either case. We used the axiomatic method of  
[Hoare and Wirth 1973] for guidance. 

Perhaps the most obvious consequence of this  
assumption is the provision within the language of syntactic 
means for  including specifications and intermediate 
assertions. Routines are specified by pre- and post-assertions; 
modules, by a pre-assertion, an invariant, an abstraction 
function, and specifications for exported routines and types, 
In addition, assertions may be placed at any point in the flow 
of control. (Most verifiers require at least one such assertion 
to "cut" each loop.) Effort  invested in writing such assertions 
should pay off  in more understandable, better-structured 
programs, even before the verification process is begun. 

The basic assertion language consists of the Boolean 
expressions of Euclid. Most verifiers will require somewhat 
richer languages, containing, for  example, quantifiers, ghost 
variables, and specification routines. Rather than picking a 
particular form for this extended language, we decided that 
extended assertions would be brackett~d as comments; each 
verifier may choose a private syntax, without affecting Euclid 
compilers. (Indeed, a program might be augmented with two 
distinct sets of assertions, intended for different  verifiers.) 

Most programs presented to verifiers are actually wrong; 
considerable t ime can be wasted looking for proofs of 
incorrect programs before discovering that debugging is still 
needed. This problem can be reduced (although not 
eliminated) by judicious testing, which is generally the most 
efficient way to demonstrate the presence of bugs. To assist 
in the testing process, any scope in Euclid can be prefixed by 
checked, which will cause the compilation of run- t ime checks 
for all basic assertions (Boolean expressions not enclosed in 
comment brackets) within the scope; this includes all legality 
assertions, which will be discussed later. If any assertion 
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evaluates to False when it is reached in the program, 
execution will be aborted with a suitable message. 

Because we expect all Euclid programs to be verified, we 
have not made special provisions for exception handling 
[Melliar-Smith and Randell 1977][McClaren 1977]. 
Run-time software errors should not occur in verified 
programs (correctness is a compile-time property), and we 
know of no efficient general mechanisms by which software 
can recover from unanticipated failures of current hardware. 
Anticipated conditions can be dealt with using the normal 
constructs of the language; most proposals for providing 
special mechanisms for exception handling would add 
considerable complexity to the language [Goodenough 1975]. 

We have also been led to a somewhat unorthodox 
position on uninitialized variables and dangling pointers. We 
do not forbid these syntactically (cf. [Dijkstra 1976] for a 
rather elaborate proposal), nor, for reasons of efficiency, do 
we supply a default initialization (e.g., to "undefined"). Our 
reasoning is as follows: verification generally places stronger 
constraints on variables (pointers) than that they merely have 
valid values when they are used--they must have suitable 
values. However, if a program can be verified without 
reference to the initial value of a variable (current variable to 
which a pointer points), then any value (variable) is 
acceptable. 

Relying so heavily on verification has an obvious 
pitfall: suppose that the formal language definition and the 
implementation don't agree. (Indeed, for Pascal, they do not.) 
We could then be in the embarrassing situation of having 
failures in programs that have formally been proved "correct" 
[Gerhart and Yelowitz 1976]. Aside from some omissions 
and known technical difficulties (e.g., [Ashcroft 1976]), the 
major discrepancies between the Pascal definition and 
implementation take the form of restrictions imposed by the 
definition, but not enforced by the implementation. For 
example, "The axioms and rules of inference...explicitly 
forbid the presence of certain 'side-effects' in this evaluation 
of functions and execution of statements. Thus programs 
which invoke such side-effects are, from a formal point of 
view, undefined. The absence of such side-effects can in 
principle be checked by a textual (compile-time) scan of the 
program. However, it is not obligatory for a Pascal 
implementation to make such checks." [Hoare and Wirth 
1973, p.337] 

In the design of Euclid, we have made a major effort  to 
ensure that there are no gaps between what is required by the 
definition and what must be enforced by any implementation 
(and that such enforcement is a reasonable task). Gaps have 
been eliminated by a variety of means: removing features 
from the language, extending the formal definition, placing 
more definite requirements on the implementation, and 
finally, introducing legality assertions as messages from the 
compiler to the verifier about necessary checking. 

There are many language-imposed restrictions that must 
be satisfied by every legal Euclid program. In addition to 
syntactic constraints, many of them (e.g., declaration of 
identifiers before use) are easily checked by the compiler, and 
it would be silly to ask the verifier to duplicate this effort. 
Others (e.g., type constraints) can usually be checked rather 
easily by the compiler, but may occasionally depend on 
dynamically generated values. Still others (e.g., array indices 
within bounds, arithmetic overflow) will usually depend on 
dynamic information, although the compiler can often use 
declared ranges or flow analysis to do partial checking. (For 
example, i := i + 1 will obviously never assign a value that is 
too small if i was previously in range.) Our philosophy is that 
the verifier should rely as much as possible on the checking 
done by the compiler. In fact, unless the compiler indicates 
differently, the verifier is entitled to assume that the program 
is completely legal. The compiler is to augment the program 
with a legality assertion (which the verifier is to prove) 

whenever it has not fully checked that some constraint is 
satisfied. Any program whose legality assertions can all be 
verified is a legal program, with well-defined semantics. 

The compiler may produce legality assertions only for 
certain conditions specifically indicated in the Euclid Report. 
They always take the form of Boolean expressions, and are 
usually quite simple (e.g., i < 10, i = j, p not= C.nil). Note 
that legality is a more fundamental property than correctness, 
since (a) it is defined as consistency with the language 
specification, rather than consistency with a particular 
program specification (a program could be consistent with 
one specification, and inconsistent with another), and (b) a 
program that is illegal has no defined meaning, and hence 
cannot be said to be consistent with any specification. Also 
note that a particular program is not sometimes legal and 
sometimes illegal (e.g., depending on whether i = j on some 
run): the verifier must show that the legality assertions are 
valid (always true). 

Later sections of this paper discuss some of the 
non-obvious legality conditions of Euclid. 

Names And Scopes 

In "Algol-like" languages the rules connecting names 
(identifiers) to what they denote (e.g., variables) give rise to 
some subtle, but troublesome, problems for both programmers 
and verifiers. Some variables, for example those passed as 
variable parameters, may be accessible by more than one 
name. Thus, assignment to x may change .~: we will call this 
aliasing. Access to a global variable can accidentally be lost 
in a scope by the interposition of a new declaration involving 
the same name (the "hole in scope" problem). Conversely, 
failure to declare a variable locally may result in a more 
global access than was intended. (Such problems are generally 
not detected by compilers.) The intimate connection between 
a variable's lifetime and its scope frequently forces variables 

to be declared outside the local scopes in which they are 
intended to be used. Finally, the automatic importation of all 
names in outer scopes into contained scopes, unless 
redeclared, tends to create large name spaces with 
correspondingly large opportunities for error. For more 
complete discussions of these problems, and some suggested 
solutions, see [Wulf  and Shaw 1973] and [Gannon and 
Homing 1975]. 

Several Euclid features are intended to remove these 
problems; they are discussed here and in the following two 
sections. Unlike the designers of Gypsy [Ambler et al. 1977], 
we did not discard the Algol notion of nested scopes, which 
seems to us to be a natural representation of hierarchy, and a 
good first approximation to the necessary name control. 
Rather, we have chosen to strengthen it by a number of 
restrictions. 

The first restriction requires the programmer to control 
the "flow" of names between levels of abstraction by means 
of an import list. Every closed scope (routine or module 
body) must be accompanied by such a list specifying those 
names accessible in the containing scope that are to be 
accessible within the closed scope, and, in the case of 
variables, whether the access is to be read-only or read-write. 
Other names are simply inaccessible. An open scope (e.g., an 
Algol-like block) may access any name accessible within the 
scope that contains it.. 

The control supplied by import lists allows us to place a 
further restriction: no name accessible in a scope may be 
redeclared in that scope. Such a restriction would probably be 
intolerable in Pascal, where a scope has no "protection" 
against unwanted names from the outside, but it seems 
sensible in Euclid. In fact, it is generally a programming 
error to redeclare an imported name. Undiagnosed holes in 
scopes would certainly cause problems for the reader and 
maintainer, and for the human verifier. 
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In practice, we found it desirable to relax slightly the 
requirement of explicit importation. We do no t  wish every 
routine that uses built-in types, such as integer, or routines, 
such as abs(x), to import them explicitly. Many programs 
will have user-defined types and routines that are almost as 
widely used. Therefore, we have provided an overriding 
mechanism: constant, routine, and type names may be 
declared pervasive in a scope, which means that they will be 
implicitly imported into all contained scopes (and hence may 
not be redeclared). The standard Euclid types are all 
pervasive: therefore, a program cannot override them. 

Euclid prohibits "sneak access" to variables by means of 
procedure calls. The name of a closed scope may not be 
imported (or used) if the names that are imported into its 
body are not also imported (accessible) at the point of use. It 
is this restriction that simplifies the enforcement of a 
complete ban on side-effects in functions (and hence in 
expressions). Functions cannot have variable parameters or 
import variables. Although they may import and call 
procedures, they cannot change any nonlocal variables by 
doing so: thus, they behave like mathematical functions. The 
possibility of side-effects in functions and expressions 
complicates the verifier's task, and we believe that their use is 
rather error-prone. We are willing to sacrifice a few 
well-known programming tricks that rely on "benign" 
side-effects in order to simplify life for the readers, 
maintainers, and verifiers of programs, and to open up new 
optimization possibilities for the implementors of the 
language. Programs involving functions with side-effects can 
be rewritten to use procedures instead. 

Import lists are intended to make the interface to each 
closed scope explicit. However, the list supplied by the 
programmer is incomplete (for the reader) in two respects: 11 
only names are given, not complete declarations, and 2) 
pervasive names do not appear. The compiler is expected to 
complete the interface description from its symbol table. It 

must augment the listing with information from the 
declarations of the imported names, and the user-defined 
pervasive declarations for that scope. Requiring the 
programmer to supply this information (which is mere 
duplication) would invite error, for no identifiable gain. 

Aliasing And Collections 

The disadvantages of aliasing (for programmers, readers, 
verifiers and implementors) have been well-documented 
[Hoare 1973, 1975] [Fischer and LeBlanc 1977]. If 
assignment to x has the "side-effect" of changing the value of 
y, it is likely to cause surprise and difficulty all around. 
However, programmers and language designers have been 
reluctant to eliminate all features that can give rise to 
aliasing, e.g., passing parameters by reference, and pointer 
variables. In designing Euclid, we took a slightly different 
approach: we kept the language features, but banned aliasing. 
Essentially, we examined each feature that could give rise to 
aliases, and imposed the minimum restrictions necessary to 
prevent them. Every variable starts with a single name: if no 
aliases can be created, then, by induction, aliasing will not 
o c c u r .  

The case of variable parameters to procedures is typical, 
and easily generalized to import lists and binding lists. All of 
the actual var parameters in a call must be nonoverlapping. If 
the actual parameters are simple names ("entire variables"), 
this requirement merely means that they must all be distinct. 
However, we must also prohibit passing a structured variable 
and one of its components (e.g., .4 and `4(1)). What about two 
components of the same variable? This is allowed if they are 
distinct (e.g., .4(1) and A(2)), and disallowed if they are the 
same (e.g., `4(1) and A(1)). Since subscripts may be 
expressions, it may be necessary to generate a legality 
assertion (e.g., 1 not= J in the case of ,4(1) and A(J)) to 
guarantee their distinctness. 

It may appear that arrays already violate our rule that 
assignment to one entire variable can never change another. 
After all, assignment to ,4(1) may change A(J). However, 
these are not entire variables. We adopt the view of [Hoare 
and Wirth 1973, p.345] that an "assignment to an array 
component" is actually an assignment to the containing array. 
Thus ,4(1) := 1 is an assignment to .4, and can be expected to 
change A(J) if J = 1. 

Pointers appeared to pose a more difficult problem. 
Assignment to pt  (i.e., to the variable to which p refers) may 
change the value of qt  (if p and q happen to point to the 
same variable, i.e., if p = q), or may even change the value of 
x (if pointer variables are allowed to point at program 
variables). We avoided the latter problem by retaining 
Pascal's restriction that pointers may only point to 
dynamically generated (anonymous) variables. (This is 
enforced by not providing an "address of" operator or 
coercion.) The usual treatment of the former problem is to 
consider pointers as indices into "implicit arrays" (one for 
each type of dynamic variable), and dereferencing as 
subscripting [Luckham and Suzuki 1976, Wegbreit and 
Spitzen 1976]. Thus p ,  is merely a shorthand for C(p), where 
C denotes p's implicit array, and the proof rules for arrays 
can be carried over directly. In particular, assignment via a 
dereferenced pointer is considered to be an assignment to its 
implicit array. From the verifier's standpoint, the situation is 
slightly better than that for arrays, since the decision of 
whether two subscripts are equal may involve arbitrary 
arithmetic expressions, while the decision of whether two 
pointers are equal reduces to the question of whether they 
resulted from the same dynamic variable generation ("New" 
invocation). 

We have not yet discussed dereferenced pointers as 
variable parameters. If p* and qt  (really C(p) and C(q)) are 
both passed, the nonoverlapping requirement demands p not= 
q. Passing both p and p* (really p and C(p!) is not a problem 
unless the formal parameter corresponding to p is 
dereferenced, which can only happen if C is accessible (i.e., 
imported). But then there would be an overlap between C(p) 
and C, which makes the call clearly illegal. Passing pointers 
themselves as parameters (like passing array indices) does not 
create aliasing problems, since dereferenced pointers (like 
subscripted arrays) are not entire variables; assignment to one 
of them is considered as assignment to its implicit array. 

Although. the solution in the previous paragraph is 
formally complete, it is unsatisfactory in practice. The minor 
difficulty is that Euclid provides no way of naming implicit 
arrays for purposes of importation. The major problem is 
that it is too restrictive. It prohibits passing a dereferenced 
pointer as a variable parameter to any procedure that is 
allowed to dereference pointers to variables of the same type 
(i.e., that imports the implicit array for that type). We have 
solved both these problems by introducing the notion of 
collections, which are explicit program variables that act like 
the "implicit arrays" indexed by pointers. Each pointer is 
limited to a single collection, and pt  is still an acceptable 
shorthand for C(p), where C is now the collection name. p t  
is only allowed where C is accessible. Note that this makes it 
possible to pass pointers as parameters to procedures that are 
not allowed to dereference them, although they can copy them. 

We allow any number of collections to have elements of 
the same type, with no more difficulty than arises from 
multiple arrays of the same type. Thus, the programmer can 
partition his dynamic variables and pointers into separate 
collections to indicate some of his knowledge about how they 
will be used; the verifier is assured that pointers in different  
collections can never point to overlapping variables. The 
astute reader will have noted that we have returned to the 
"class variables" that were in the original Pascal, but dropped 
in the revised version. 

Collections also provide convenient units for storage 
management. We have chosen to associate with each 
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collection both the decision of whether to reference-count, 
and the selection of the (system- or user-supplied) storage 
management module (called a zone) to provide thespace.  

One consequence of our complete elimination of aliasing 
is that "value-result" and "reference" are completely 
equivalent implementation mechanisms for variable 
parameters, and a compiler is free to choose between them 
strictly on the basis of efficiency. 

Modules 

Since the introduction of "classes" by Simula 67 [Dahl et 
al. 1968], several programming languages have introduced 
mechanisms for "data encapsulation" or "information hiding" 
[Parnas 1971]. A survey of desirable properties of such 
mechanisms is given in [Homing 1976]. For Euclid, we 
chose something less powerful than "classes," "forms" [Shaw 
et al. 1977], or "clusters" [Liskov et al. 1977]. Our modules 
are closely akin to. but somewhat more complex than, the 
"modules" of Modula [Wirth 1977]. Adjusting the details of 
modules satisfactorily has been more difficult than expected. 
Perhaps this is because we still have an imperfect 
understanding, but it may also be because we violated our 
usual practice, and started from implementation 
considerations, rather than from verification issues. 

The basic idea is that a module should "package up" a 
data structure and a related set of routines for its 
manipulation, and should hide its internal details from the 
outside world. We originally viewed it as a sort of glorified 
record, with some extra components (routines, types, 
initialization, finalization) and some control over the external 
visibility of its names (an export list). Like record, module is 
a type constructor, and a module type can be used to create 
many instances; this is the major source of differences 
between Euclid and Modula "modules." 

Modules provide natural units for program construction. 
In fact, Euclid programs take the form of modules, rather 
than procedures; this is particularly appropriate when the 
program is to provide a number of entry points sharing a 
common data base that is to survive the various invocations 
(e.g., an operating system kernel). The "protection" provided 
by control over exported names serves as a useful first step 
towards abstract data types [Sigplan 1976]. In addition, they 
are used within the language in two places where it seemed 
important to effect a separation of concerns. The first is in 
iteration, where the knowledge of how to enumerate the 
elements of some data type should generally be associated 
with the type (module), rather than with each loop that needs 
such an enumeration. The problem, and its solution using 
generators is discussed in more detail in [Shaw et al. 1977]. 
We have chosen to use a simplification of the Alphard 
solution that seems powerful enough for the most common 
cases. 

Similarly, the issues of how to allocate storage are quite 
separable from the uses to which that storage is put. We have 
chosen to isolate that knowledge in zones, which are (system- 
or user-defined) modules solely concerned with allocating and 
deallocating storage and ensuring that storage allocations 
never overlap. A zone deals with blocks of "raw storage"; it is 
the compiler's responsibility to ensure that its procedures are 
invoked at proper times, with correct parameters, and that the 
storage it allocates is properly initialized for its intended use, 
and that there is no type confusion or variable overlap 
outside the zone. 

Types 

One of the principal contributions of Pascal was its 
development of the notion of data types. Despite certain 
deficiencies [Habermann 1973], we find it more satisfactory 
than competitive approaches (e.g., the modes of Algol 68 [van 

Wijngaarden et al. 1976]). Pascal's types provide a flexible 
and convenient set of efficient data structuring mechanisms, 
and are useful conceptual tools for partitioning and 
organizing data within programs. In a type-rich language, 
such as Pascal, type-checking serves as a very effective 
compile-time error screen [Gannon and Horning 1975] 
[Gannon 1977]. 

It is a major undertaking to develop a new approach to 
data types that is both consistent and useful, and we did not 
attempt to do so within Euclid. Nevertheless, we felt 
compelled to try some small changes in the directions of 
safety and flexibility. Even these were difficult to get right. 

Almost all type-checking in Pascal can be done at 
compile-time; the major exceptions are due to variant records 
and to the incomplete specification of formal parameters that 
are functions and procedures [Fischer and LeBlanc 1977]. 
The former are no! a problem in Euclid, since such 
parameters are disallowed, but Euclid retains variant records. 
The problems in Pascal arise from aliasing (which we have 
already dealt with), from the treatment of the tag (which 
selects the current variant) as an ordinary, assignable field of  
a variant record, and from the accessibility of variant field 
selectors even when they do not apply to the current variant. 

In Pascal, uncontrolled assignment to the tag field can 
change the current variant without ensuring that the 
corresponding fields contain values of appropriate types. We 
have eliminated this possibility in Euclid by making the tag a 
constant component of a variant record, and hence not 
assignable. If a variable is of variant record type, its current 
variant can only be changed by assignment of a record of one 
of the other variant record types; this assignment supplies a 
complete set of fields appropriate to that variant. 

Variant field selectors are only accessible within the 
alternatives of a discriminating case statement, where the 
alternative is selected by the current tag. In the case 
statement, a local name is provided for the variant record 
(either as a constant or a variable); within any alternative, 
that name has the (nonvariant) type selected by the 
corresponding tag value, and all field selectors of that type are 
accessible. If the local name is bound to a variant record 
variable, the nonaliasing rule makes its more global name 
unusable in the scope; hence, there is no danger that its type 
may be changed within the scope (e.g., by calling a procedure 
that does so surreptitiously). If the local name is a constant, 
the variable may still be changed, but this will not affect the 
(discriminated) constant in any way, so access to its fields 
remains safe. Thus, variant records cannot be used to 
circumvent Euclid's type-checking. As a minor benefit, we 
avoid the need for the Pascal restriction that the same field 
names may not be used in separate variants. 

Pascal treats (sub)ranges as types, and requires that all 
bounds be known at compile-time (i.e., be manifest 
constants). This is somewhat irksome for array bounds, and 
almost intolerable for routines that take array parameters. 
However, it allows a number of simplifications throughout 
the language, compiler, and verification system. We have 
allowed only a minor relaxation: bounds must still be 
constants, but they need not be manifest, in particular, a 
constant formal parameter of a routine may be used to 
specify a bound of another formal parameter. This will 
require verification that the bounds for the latter parameter 
are correct in all calls to the procedure since they are not 
fixed at compile time. We expect this usage to be common, 
and have supplied a shorthand; if a bound is specified as 
parameter, an additional (implicit) actual parameter 
containing the actual bound will be supplied automatically for 
each call. 

A type declaration in Pascal provides a shorthand for a 
single type. In Euclid, a type declaration may have formal 
parameters. A parameterized declaration represents a set of 

'15 



types, one of which is specified (by supplying actual 
parameters for all the formals) each time the type is 
referenced (e.g., to declare a variable). This allows the 
relationships among similar types to be made explicit in the 
program, and makes it easier for the program to exploit such 
relationships. Variant record definitions will usually appear 
within parameterized type declarations, with the tag being one 
of the formal parameters. Each particular value supplied as 
the corresponding actual parameter in a reference to such a 
type will select a particular alternative, i.e., will yield a 
nonvariant record. This is a useful feature (not available in 
Pascal), but it is often desirable to defer the choice of a 
variant. This can be done by using the special actual 
parameter any, which specifies that the type contains all 
values of the types corresponding to any choice for the tag, 
i.e., that the variant may be changed dynamically, by 
assignment. 

Collections of variant records allow another degree of 
freedom. It is possible to select a variant at the time a 
dynamic variable is allocated, and to disallow any changes of 
variant by assignment. This is done by using the special 
actual parameter unknown in defining the object type of a 
collection. For each such unknown parameter, every call of 
New must supply an additional actual parameter that specifies 
the variant of the new dynamic variable. Both any and 
unknown specifications will lead to the use of discriminating 
case statements for access to the variant parts of records. 

The Pascal Report is not very explicit about when two 
types are "the same," and it is not always clear what 
type-checking is allowed (required). E.g., !..10 and 2..11 
define subrange types that (in some sense) are clearly 
different. But what is the type of 2, which could be assigned 
to a variable of either type? Are we to assume that there are 
some subtle "coercions" going on (as is hinted in [Hoare and 
Wirth 1973])? Another problem: If type Miles = 1..10, and 
type Hours = 1..10, are Miles and Hours "the same" type or 
not? If the answer is "yes," the programmer has not gotten 
any protection by using different type names for conceptually 
different types; if it is "no," how do we justify using the same 
addition operator for both, and how can we write a routine 
that would accept either as a parameter? Should we go to the 
Algol 68 extreme of treating as "the same" all types that have 
the same representation, completely ignoring programmer- 
supplied type names? (See [Habermann 1973] for further 
examples of the difficulty of reasoning strictly from the hints 
given in [Wirth 1971] and [Hoare and Wirth 1973].) 

We decided that the rules for type-checking must be 
quite explicit in Euclid (i.e., we would rather be wrong than 
vague in our answers to these questions). We have devoted 
considerable effort  to spelling them out clearly. Firstly, we 
separately specified two kinds of checking: in a binding (e.g., 
formal/actual correspondence for a variable parameter) the 
two types must be the same (defined below); in other contexts 
(e.g., assignment, constant definition, constant parameter, 
operands of operators) a value of one type must be 
compatible with another type (e.g., within the proper 
subrange). Secondly, we never associate a subrange type with 
a value, rather the value gets the containing type (e.g., 
integer). Thirdly (after toying with having synonym and 
nonsynonym type declarations), we decided not to treat type 
declarations as creating new types: a type name is the same as 
its definition. Fourthly, every module definition creates an 
opaque type (i.e., one whose internal structure is not visible); 
types exported from modules are also opaque. Opaque types 
are only the same if they are defined by the same piece of 
text (i.e., even identical definitions define distinct types); 
exported types are the same only if exported (with the same 
name) from the same instance of the module type. Finally, 
two references to a parameterized type are the same only if 
their actual parameters are equal (this may cause the 
generation of legality assertions). 

Containment Of  Machine Dependencies  

Euclid contains most of the "escape hatches" (providing 
direct access to machine features) typical of system 
implementation languages [Mohll 1975]. There is provis ion 
for machine-code routine bodies, for placing variables at 
fixed addresses, for specifying the internal representation of a 
record, and for explicitly overriding type-checking. Many of  
these features are difficult to define formally, and all of them 
pose problems for verification. We have not solved most o f  
these problems; we have merely provided a mechanism for 
containing their effects. 

Some modules may be explicitly declared to be 
machine-dependent; these are the only modules that are 
allowed to contain the various machine-dependencies 
mentioned above, or to contain machine-dependent modules. 
Machine-dependent modules serve to textually isolate these 
features, and to encapsulate their use; they may be imported 
into modules that are not machine-dependent (and rely only 
on the specifications, not the implementations of the 
imported modules). This does not simplify the process of 
verifying that machine-dependent modules actually do meet 
their specifications; it merely means that the verification of  
all other modules can proceed in a machine-independent 
manner. 

We expect machine-dependent modules to be used for  
two different purposes: to provide efficient machine- 
dependent implementations for packages whose specification 
is machine-independent (e.g., string manipulation, high-level 
I/O), and to provide controlled access to machine features 
(e.g., channels, clocks, page tables). Programs using only the 
former should be quite portable, requiring changes to (and 
reverification of) only the bodies of the machine-dependent 
modules. However, in the latter case, machine-dependencies 
in the module specifications themselves will work against 
portability (which is not required for many of Euclid's 
intended applications, such as operating system kernels). 

Conclusions 

Even though Euclid does not represent a dramatic 
advance in the state of the art, we have accomplished several 
things relevant to reliability. Firstly, we have designed a 
useful language (Euclid minus machine-dependent modules), 
all of whose features are (in principle) verifiable in their full 
generality by existing techniques. Secondly. we have 
demonstrated that it is possible to completely eliminate 
aliasing in a practical programming language. Thirdly, we 
have made variant records completely type-safe. 

By and large, the changes that we made to Pascal could 
be justified without reference to verification, and would be 
useful even in situations where verification is not a formal 
requirement. However. it is unlikely that many of them 
would have been made had verification not been one of our 
primary concerns. Furthermore, we seem to have been 
somewhat more successful at "getting it right the first time" 
when we started from a verification issue (e.g., nonaliasing, 
collections) than when we "worked back" from the 
implementation (e.g., modules, zones). Perhaps this is because 
the construction of proof rules is a useful discipline that 
makes it necessary to be very explicit about the interactions 
of language features. 

This paper has not been able to convey, the extent to 
which various design decisions were interdependent. None of 
them was made in isolation, and some of them caused ripples 
throughout the language. We feel good about the decision to 
make the control of visibility explicit, for example, because it 
supported so many of the other changes we made. The 
decisions to totally ban side effects in functions was triggered 
by an observation concerning legality assertions. It was the 
introduction of generators that reconciled some of us to the 
elimination of functions and procedures as parameters. 
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We are all reasonably happy with the way that Euclid 
has turned out. However, it is appropriate to ask how well it 
meets our original goals. Among other things, we were asked 
to "make minimal changes and extensions to Pascal," and our 
effort  was to be "quite limited: only a month or two in 
duration." Even though we did not satisfy either goal, in 
retrospect it seems that both were quite necessary for  
whatever success we have had. It has taken us a year to 
carefully work through and document the interactions of the 
small set of changes to Pascal that we agreed to in the first 
two days; had we been more ambitious at the start, we would 
still be discovering surprising implications of "innocuous" 
changes. 

It is hard to feel guilty about making more than minimal 
changes to the form of Pascal. As we have stressed in this 
paper, the conceptual changes have been relatively small; 
however, we expect them to lead to significantly different  
programming styles. Euclid is a language with its own 
"flavor" and style. It would be as wrong to try to cast it as 
"pidgin Pascal" as it would have been to cast Pascal as "pidgin 
Algol." 

Finally, a few comments on language design by 
committee: It is not easy, under the best of circumstances. It 
is clear that any one of us could have designed a new 
language by himself with less effort  than he expended on 
Euclid; it is equally clear that each of those languages would 
have contained hidden problems or limitations that we 
managed to expose and eliminate in the process of designing 
Euclid. The substantial variety in our backgrounds was very 
helpful in the design process, although it could have been a 
major stumbling block bad we not started with a highly 
compatible set of views on what needed to be done. 
Surprisingly, our geographical distribution, which could have 
been expected to be an obstacle to close cooperation, was 
turned into an asset by the Arpanet. It made rapid 
communication convenient, and encouraged both five-way 
interaction on all issues and the maintenance of a complete 
record of all "discussions." 

We surprised ourselves by spending much more time on 
"exposition" (writing the defining report and proof rules) 
than we spent on "language design." The latter would have 
been useless without the former, and it could be argued that 
the design will not be complete until we are satisfied with the 
exposition, but we somehow hadn't  planned to spend so much 
time explaining. Conceptual unity in a report cannot  be 
obtained by having everyone write a few sections; we found 
no substitute for  having a single person (Butler Lampson) 
write and edit the entire defining document, with the advice 
and consent of the rest. 
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