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Abstract

This paper describes a design for an authentication service for a very large scale, very
long lifetime, distributed system. The paper introduces a methodology for describing
authentication protocols that makes explicit the trust relationships amongst the
participants. The authentication protocol is based on the primitive notion of composition
of secure channels. The authentication model offered provides for the authentication of
“roles”, where a principal might exercise differing roles at differing times, whilst having
only a single “identity”. Roles are suitable for inclusion in access control lists. The
naming of a role implies what entities are being trusted to authenticate the role. We
provide a UID scheme that gives clients control over the time at which a name gets bound
to a principal, thus controlling the effects of mutability of the name space.

Introduction

This paper describes a design for an authentication service for a distributed system. The
design has three goals that we feel have not been met simultaneously by any previous
design. First, the service must be able to grow to cover an arbitrarily large physical area,
arbitrarily many administrative organizations, and arbitrarily many users (millions or
billions); the service must be suitable for a long lifetime. Second, the system must not be
monolithically trusted: it must be possible to achieve authentication even if there exist
untrusted parts of the system. Third, these goals must be met in such a way that each party
to the authentication knows precisely what agencies the party must trust in order to accept
the authentication.

The fundamental purpose of authentication is to enable “principals” to identify each other
in a way that allows them to communicate, with confidence that the communication
originates with one principal and is destined for the other. The principals we are
considering include people, machines, organizations and network resources such as
printers, databases or file systems.

                                                
1 This paper appeared in Proc. IEEE Symposium on Security and Privacy, Oakland, CA, April 1986, IEEE
order number 716, pp 223-230.
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All authentication schemes ultimately reduce to enabling each principal to obtain or
possess some information identifying the other. In a distributed system, this information
is then used as key to some encryption based security protocol. In this paper we will not
discuss secure communication protocols—there is already an adequate literature on that
topic [3,7].

The simplest solution to the authentication problem is for each pair of principals to
possess a pairwise shared secret key; then authentication is achieved trivially using a two-
way handshake to prove knowledge of the shared key [7]. Of course, in most large
systems this is impractical: the problems of distributing or changing such keys are
extreme, involving the use of N2 secret keys for communication amongst N principals.

Another simple solution is available using public key encryption [5]. If each principal has
the public key of each other principal, it is straightforward to establish secure
communication. This requires only N keys, but it is still extremely difficult to change
keys. In a large scale system containing millions or billions of principals, even the use of
compact disc technology would not be sufficient for publishing the public keys,
particularly considering how often keys would change.

All the remaining approaches, including the present design, are based on the use of a
trusted intermediary known as a “key distribution center” or “authentication service”. In
such a system it is necessary to be able to identify the principals. In some circumstances
unique identifiers (such as 48-bit numbers) are sufficient for this, but in a large scale
system the only practical approach is for the principals to be named by some form of
distributed name service. In our view, a global authentication service is impractical unless
it is based on some such global name service.

Note that if an authentication design is based on the notion of naming the principals
through a network name service, then the design is relatively unperturbed by the decision
to use a public key encryption system or a secret key one. Public key systems have the
benefit that the name service database is less secret, but the flow of data and control
amongst the principals is unaffected [5]. For the remainder of this paper, we will consider
only secret key systems.

Background

The present authentication service design was developed as part of a design for a global
name service. The goals of that design are similar to the ones stated above. The name
service provides a heirarchic name space. The name space is formed from “directories”,
each of which provides mutable mappings from a “simple name” (typically denoted by a
character string) to a set of values. These directories are connected into a tree structure
with a single, global, root, as shown in figure 1. The name space we provide is quite
similar to the name space of many common file systems, such as Unix.
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Figure 1: A corner of a hierarchic name space

Each directory may be replicated; each directory replica is maintained by a “name server”
(running on some computer). Each name server maintains some set of (entire) directory
replicas. The distribution and replication of the directories amongst the name server
machines is similar in spirit to some earlier designs such as Grapevine [2] or
Clearinghouse [8].

Each directory in the name service is permanently and uniquely identified by a UID. The
“names” presented to this service consist of the identifier of some directory (known as the
“root” of the name), and a path from there consisting of a sequence of simple names for
the directories that form the path.

Some further features of the name space provided by this name service will be described
later in the paper. A detailed description of this name service exists, although it is not yet
in a form suitable for wide distribution (for pedagogic reasons, not completeness or
correctness).

The easy way to use such a name service for authentication is to view the name service as
uniformly trusted; then there are straightforward published authentication protocols [1, 4,
6, 7]. This level of trust is unacceptable for our present goals.

Authentication primitives

The basis for our authentication is a set of “secure channels” provided by the name
service. A secure channel is formed whenever a pair of principals share a key. This is a
secure channel in the sense that the two principals can readily use the key to establish
communication encrypted by some conversation key, assured of freedom from
eavesdropping, tampering or replay, and assured of the identity of the other principal.

Each principal registered in the name service has a secure channel to that principal’s
directory. This is formed using the principal’s personal secret key (password), held by the
principal and also stored in the principal’s directory entry. Implicit in our design is the
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notion that there is a one-to-one correspondence between principals and directory entries.
Similarly, each directory has a secure channel to the directory’s parent, formed by a secret
key held by the directory and stored in the directory’s entry in its parent directory. In this
respect, a directory behaves just like any other principal.

We make extensive use of signed and sealed information. We write “{Q}K” to mean that
the message Q has been signed and sealed with the key K. The impact of this is that {Q}K
can be manufactured only by a principal who possesses K, and given {Q}K, Q can be
extracted only by a principal who possesses K. (In a public key system, the operation of
signing is performed with a principal’s secret key, and sealing is performed with a
principal’s public key.)

We use the following notation for secure channels. If principals Pi and Pj each possess Kij
which forms a secure channel between them, we write “Pi knows Kij 3j” and “Pj knows
Kij 3i”. The symbol “ ´�FDQ�EH�UHDG�DV�³DXWKHQWLFDWHV´��,I�3i was given the channel by
some other principal or set of principals P*, then Pi should trust the channel only as much
as Pi trusts P*. We write this as “Pi knows P* say Kij 3j”

The impact of the “authenticates” notation is the following lemma:

a) If principal Pi knows “P* say Kj 3j”
and Pi receives “{Q}Kj”
then Pi may deduce “P* say Pj says Q”.

Informally, (a) says that when Pi receives a message (Q) along a secure channel, then Pi
should believe the message, subject to trusting the principal at the other end of the
channnel (Pj) and the principal or principals who gave Pi the channel (P*).

Our authentication schemes are based on this lemma and the following algorithm, known
as the “forwarding rule”:

b) If principal Pi knows “Kx ;´�DQG�³.y <´
and is asked to forward “{P* say K 3j} Kx” to Y,
then Pi deduces “X says P* say K 3j”, using lemma (a),
and Pi replies “{X says P* say K 3j} Ky, {K <`K”.

Here and everywhere else we are eliding the details required for secure communication
along one of our secure channels. These details include challenge-response connection
establishment using nonce identifiers, sequencing of requests and replies, and signing and
sealing of all data with a conversation key. Any reader who is unable to fill in these
details easily should first read a paper such as the survey by Voydock and Kent [7].

Informally, the value of the forwarding rule is that it allows us to compose secure
channels to form a new secure channel. In particular, if we have a secure channel from P1
to P2 and another from P2 to P3, we can use the forwarding rule to construct a secure
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channel (that is, a shared secret key) from P1 to P3, subject to trusting P2. This
mechanism is applied three times in the following example.

Authenticating in a heirarchic name space

Consider a corner of a heirarchic name space as shown in figure 1. The labels P1, P2, etc.
identify principals, and K1, K2, etc. are the corresponding secret keys. P1 and P5 are
clients of the name service, while P2, P3 and P4 are three directories. P3 has some parent
directory, not shown here. P1 is known as “ADB” relative to P2. P2 is known as “DEC”
relative to P3. P4 is known as “IBM” relative to P3. P5 is known as “CJS” relative to P4.
Each principal knows its own secret key, which is also known to its directory entry.

1.1: P1 knows: K1 32
P2 knows: K1 31 and K2 33
P3 knows: K2 32 and K4 34 and K3 33’s parent
P4 knows: K4 33 and K5 35
P5 knows: K5 34
P1 creates a new key K and decides to use it such that K32

1.2: P1 sends P2: please forward {K 31} K1 to P3
P2 replies: {P1 says K 31} K2, {K 33} K using (b)
P1 deduces: P2 says K 33 using (a)

1.3: P1 sends P3: please forward {P1 says K 31} K2 to P4
P3 replies: {P2 says P1 says K 31} K4, {K 34} K using (b)
P1 deduces: P2 says P3 says K 34 using (a)

1.4: P1 sends P4: please forward {P2 says P1 says K 31} K4 to P5
P4 replies: {P3 says P2 says P1 says K 31} K5, {K 35} K
P1 deduces: P2 says P3 says P4 says K 35 using (a)

1.5: P1 sends P5: {P3 says P2 says P1 says K 31} K5
P5 deduces: P4 says P3 says P2 says P1 says K 31 using (a)

Figure 2: Establishing a secure channel between P1 and P5.

Figure 2 shows the steps involved in establishing a secure channel between P1 and P5.
The final state is that P1 and P5 share K, and each knows that K authenticates the other,
subject to trusting the intermediate principals.

This is all fine, except for the question of how we identify and represent the principals
being discussed. If we identify them using a global, absolute, name, then we are
effectively trusting the higher layers of the naming hierarchy all the way back to the
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global root. This is unacceptable for the sort of system we are designing. This problem is
resolved by observing that the principals being trusted by P1 are precisely those that form
a path from P1 to P5, and that P5 trusts those that form a path from P5 back to P1. We can
take advantage of this by applying the following rewriting rule:

c) The statement “A says K %´��ZLWK�%�QDPHG�UHODWLYH�WR�$�
is equivalent to “K $�%´�

Conversely, a statement of the form “K$�%´�VKRXOG�EH�LQWHUSUHWHG�DV�LPSO\LQJ�WKDW�$
says K %��,Q�RWKHU�ZRUGV��WKDW�. should be trusted as authenticating B, relative to A, to
the extent that A is trusted.

We can use (c) to restate a special case of lemma (a) as follows:

d) If principal Pi knows “Kj 3j”
and Pi receives “{K 3`Kj”
then Pi may deduce  “K 3j/P”.

Similarly, we can restate the forwarding rule (b) as:

e) If principal Pi knows “Kx ;´�DQG�³.y <´��QDPHG�UHODWLYH�WR�3i,
and Pi is asked forward “{K 3j} Kx” to Y,
then Pi deduces “K ;�3j”, using lemma (d),
and replies  “{K ;�3j}, {K <`K”.

Now consider figure 3, which shows the same example, establishing a secure connection
between P1 and P5, but reworked using relative paths. We use the notation “..” to mean
“parent” and “.” to mean “self”. We replace occurrences of “P/.” with “P” without
comment.

The deductions being made by P1 in step 2.4 and by P5 in step 2.5 are exactly equivalent
to the deductions they made in steps 1.4 and 1.5, except for the translation to relative
paths. However, these paths are now in a form that is independent of other, untrusted
parts of the name space.

These authenticated named paths are suitable for use in making access control decisions.
For example, a file server (acting as a principal) would build its access control lists to
contain paths relative to itself. When the file server authenticates a client, it obtains a path
(just as P1 did in 2.4) and then compares this path with the access control list for the
requested file operation. Access control lists can also contain patterns matching paths, for
example to give access to all principals in some organizational directory.
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2.1: P1 knows: K1 ..
P2 knows: K1 $'%�DQG�.2 ..
P3 knows: K2 '(&�DQG�.4 ,%0�DQG�.3 ..
P4 knows: K4 .. and K5 CJS
P5 knows: K5 ..
P1 creates a new key K and decides to use it such that K ..

2.2: P1 sends P2: please forward {K �`K1 to ..
P2 replies: {K $'%`K2, {K ..}K using (e)
P1 deduces: K ../.. using (d)

2.3: P1 sends P3: please forward {K $'%`K2 to IBM
P3 replies: {K '(&�$'%`K4, {K ,%0`K using (e)
P1 deduces: K ../../IBM using (d)

2.4: P1 sends P4: please forward {K '(&�$'%`K4 to CJS
P4 replies: {K ../DEC/ADB}K5, {K &-6`K using (e)
P1 deduces: K ../../IBM/CJS using (d)

2.5: P1 sends P5: {K ../DEC/ADB}K5
P5 deduces: K ../../DEC/ADB using (d)

Figure 3: The same example reworked using relative paths.

Non-heirarchic naming: symbolic links

Our name service also provides facilities for non-heirarchic naming. This seems to be
essential for the scale of system we envisage, and for any name service having a long
lifetime. The primitive facility is that a directory entry may be marked as a “link” to
another name. When such an entry is encountered during name resolution, the value of
the entry is prepended to the remainder of the path being resolved.

For example, assume there is an entry named “Friend” in the directory P2 of the previous
example. The entry “Friend” is marked as a link, and its value is a name that resolves to
the directory P4. Then the path “Friend/CJS” from directory P2 resolves to the directory
entry for P5. Similarly, the path “DEC/Friend/CJS” from the directory P3 resolves to the
same entry.

By treating symbolic links as additional secure channels, we can use them to bridge
untrusted areas of the name space. We can make them secure by recording a key “Kf” in
the entry “Friend” in directory P2, and recording the key Kf in the private data structures
of directory P4. Note that if we do not trust P3, then we must install this key in those
places by external means—we cannot use P3 to establish a channel from P2 to P4 for key
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installation. This is fundamental and unavoidable. Note also that our authentication will
not rely on the accuracy of resolving the name given by the “Friend” directory entry,
because we can verify that the name is correctly resolved by the fact that P4 possesses Kf.
Thus the name for “Friend” can happily involve untrusted regions of the name space,
even up to the global root.

With this symbolic link, consider the alternative authentication from P1 to P5, as shown
in figure 4.

3.1: P1 knows: K1 ..
P2 knows: K1 $'%�DQG�.2 .. and Kf )ULHQG
P4 knows: K5 CJS and possesses Kf
P5 knows: K5 ..
P1 creates a new key K and decides to use it such that K..

3.2: P1 sends P2: please forward {K .}K1 to Friend
P2 replies: {K $'%`Kf, {K )ULHQG`K using (e)
P1 deduces: K ../Friend using (d)

3.3: P1 sends P4: please forward {K $'%} Kf to CJS

P4 replies: {K ?/ADB} K5, {K &-6`K using (e)
P1 deduces: K ../Friend/CJS using (d)

3.4: P1 sends P5: {K ?/ADB} K5

P5 deduces: K ../?/ADB using (d)

Figure 4: Authentication involving a symbolic link

In one direction, this is quite satisfactory. In step 3.3, P1 deduces the desired
authentication information. P1 can now make access control decisions based on this path.
P5’s deduction in step 3.4 is less satisfactory, as the “?” symbols indicate. This comes
from the fact that P4 has no way of naming the incoming symbolic link, even although it
possesses and can find Kf.

This asymmetry comes directly from the asymmetry of our name space. Not all paths
through it are reversible. There are various ways to handle this problem. The simplest is
to live with it. This would mean that the authentication service provides two-way
authentication if and only if the path is reversible. An alternative would be to change the
name space so that symbolic links are always bi-directional. Then the “?” in the above
example would be replaced by the reverse name for the link, and both principals would
derive satisfactory conclusions. In the present state of our design, we are not sure which
of these to adopt.

In some cases, this asymmetry is in fact desirable. For example, if a manager wished to
log in to a database server, the manager could be authenticated in his role using a
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symbolic link from a “manager” directory entry to his personal directory entry, but the
manager would name the database server with the name of its ordinary identity.

Semantics

The authentication facility provided by this service may be unfamiliar. When P5 receives
an authenticator from P1, then P5’s knowledge of P1’s identity consists of the path from
P5 to P1. This contrasts with schemes where P5 ends up knowing an absolute name for
P1.

Our view is that this authentication scheme authenticates “roles”, not “identities”. A
principal may take on differing roles, depending what privilege he wants to exercise. For
example, a user might normally use his role as an unprivileged programmer, but at other
times exercise a role as a system administrator or a different role as a contracted
consultant to an outside corporation. This is different from schemes where a user logs in
with a different identity for each role; in our scheme the user retains the same identity (as
evidenced by a particular object in a particular directory) regardless of his current role.

Thus, in example 2, P5 is exercising the role “../../IBM/CJS”. In example 3 (with the
symbolic link), P1 is authenticating P5’s use of the role “../Friend/CJS”.

An access control facility, for example, would maintain access control lists giving
appropriate access rights to each role, or to patterns that match sets of related roles.

A significant advantage of the notion of “role” is that it allows a principal to decide what
privileges to exercise at what times. This contrasts with other schemes that give a
principal at all times whatever privileges the access control policies specify.

Although a principal exercises different roles, the principal uses just one password, the
secret key corresponding to his identity. This contrasts with other schemes where a
principal must present an additional password to exercise additional privileges, with the
consequent problems of remembering and changing multiple passwords.

In considering the trust relationships that a principal believes when accepting an
authenticated role, note that each principal trusts precisely the directories that form the
nodes on the path described by the role. Thus placing a role in an access control list
implies trust of precisely these nodes, but of no other principal.

Mutability of the name space

Our name service design includes the ability to rename a directory. This includes the
ability to give a directory (and its entire descendent sub-tree) a new parent. It is also
permissible to change the targeting of a symbolic link.

This mutability has substantial impact on the use of roles for access control decisions.
Changing the arcs in its path might change the “meaning” of a particular role. There are
occasions when this is desirable, and the intended access is for whatever entity,
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dynamically, is named by the path. On other occasions, the intended access is for the
entity that was named by the path when the access right was given.

We give clients of the service control over this choice. Each directory is permanently and
uniquely identified (for example, by a 96-bit UID). When an arc in a path names a
directory, the arc may include the directory’s UID. The effect is that if all the arcs in a
path contain UID’s, the path is totally bound to the particular directories. If only the end
point of a path has a UID, it identifies a particular principal independently of how that
principal is currently approached. A path with no UID’s identifies whatever principal the
path presently resolves to. In effect, this choice gives the client control over a spectrum
ranging from extreme early binding to extreme late binding.

Summary and conclusions

We have presented a new authentication scheme that remains workable even in a very
large scale, very long lifetime, distributed system. Our scheme ensures that each party to
the authentication knows who is being trusted, and that it is possible to achieve two-way
authentication without trusting the entire global authentication service. Our authentication
semantics are based on the notion of “role”, which is an authenticated path through the
name space. Roles are suitable for inclusion in access control lists. Implicit with a role is
the set of entities that must be trusted to authenticate the role. Use of differing roles
allows principals to choose what privilege they wish to exercise.

The optional use of UID’s in roles gives each access control agency control over the
choice between early and late binding of names.

We believe that our design exemplifies the use of simple but powerful reasoning about
authentication protocols. It is clear at all stages who knows what, and who is trusting
whom. The “forwarding” rule is an important primitive. By composing secure channels,
we can design authentication protocols with various desired properties. For example, we
could compose the secure channel from P2 to P3 with that from P3 to P4 to obtain a
cached channel from P2 to P4. (Such caching would be necessary in an implementation to
obtain satisfactory performance.)

The design is at an advanced stage, and is specified fully by a semi-formal abstract
notation, as is the global name server design. At this date, we have not implemented the
design, but we intend to do so.
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