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We have incorporated on-line data compression into the low levels
of a log-structured file system (Rosenblum’s Sprite IFS). Each block

of data or meta-data is compressed as it is written to the disk and
decompressed as it is read. The log-structuring overcomes the

problems of allocation and fragmentation for variable-sized blocks.
We observe compression factors ranging from 1.6 to 2.2, using

algorithms running from 1.7 to 0.4 MBytes per second in software
on a DECstation 5000/200. System performance is degraded by a

few percent for normal activities (such as compiling or editing), and
as much as a factor of 1.6 for file system intensive operations (such
as copying multi-megabyte files).

Hardware compression devices mesh well with this design. Chips

are already available that operate at speeds exceeding disk transfer
rates, which indicates that hardware compression would not only

remove the performance degradation we observed, but might well
increase the effective dkk transfer rate beyond that obtainable from
a system without compression.

1 Introduction

Building a file system that compresses the data it stores on disk is

clearly an attractive idea. First, more data would fit on the disk.
Also, if a fast hardware data compressor could be put into the data

path to disk, it would increase the effective disk transfer rate by the
compression factor, thus speeding up the system. Yet on-line data

compression is seldom used in conventional file systems, for two
reasons.

First, compression algorithms do not provide uniform compres-

sion on all data. When a file block is overwritten, the new data

may be compressed by a different amount from the data it super-

sedes. Therefore the file system cannot simply overwrite the original
blocks—if the new date is larger than the old, it must be written to a
place where there is more room; if it is smaller, the file system must
either find some use for the freed space or see it go to waste. In
either case, dkk space tends to become fragmented, which reduces
the effective compression.

Second, the best compression algorithms are adaptive-they use

patterns discovered in one part of a block to do a better job of
compressing information in other parts [3]. These algorithms work
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better on large blocks of data than on small blocks. Table 1 shows the

variation in compression ratio with block size for a simple adaptive
compression algorithm. The details vary for different compression

algorithms and different data, but the overall trend is the same—
Iw-ger blocks make for better compression.

input block size compression ratio

(bytes) (output size/input size)

IK 68’%0
2K 63%
4K 59%
8K 55%

16K 53%
32K 51%

The file progc from tbe Calgary Compression Corpus [3] was com-
pressed using various block sizes. The file contains 39611 bytes of
C source. The entire tite was compressed, one block at a time. The
compression algoridrm is described below in Section 4 as Algorithm 2.

Table 1: An example of improved compression with increased block
size.

However, it is difficult to arrange for sufficiently large blocks
of data to be compressed all at once, Most file systems use block

sizes that are too small for good compression, and increasing the
block size would waste disk space in fragmentation. Compressing

multiple blocks at a time seems difficult to do efficiently, since
adjacent blocks are often not written at the same time. Compressing

whole files would also be less than ideal, since in many systems

most files are only a few kilobytes [2].

In a log-structured file system, the main data structure on disk is
a sequentially written log. All new data, including modifications to
existing files, is written to the end of the log, This technique has

been demonstrated by Rosenblum and Ousterhout in a system called
Sprite LFS [9]. The main goal of LFS was to provide improved
performance by eliminating disk seeks on writes. In addition, LFS
is ideally suited for adding compression—we simply compress the

log as it is written to disk. No blocks are overwritten, so we do
not have to make special arrangements when new data dqes not
compress as well as existing data. Because blocks are written

sequentially, the compressed blocks can be packed tightly together
on dk.k, eliminating tiagmentation. Better still, we can choose to
compress blocks of any size we like, and if many related small files

are created at the same time, they will be compressed together, so
any similarities between the files will lead to better compression. We
do, however, need additional bookkeeping to keep track of where
compressed blocks fall on the disk.

The remainder of this paper describes the relevant features of
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Figure 1: Simplified view of LFS’S log.

Sprite LFS, the changes needed to introduce compression, and the
performance of our modltied system using simple software com-

pression routines. We argue that suitable hardware compression
devices can be readily obtained or constructed.

2 Sprite LFS

Sprite LFS places all file data and almost all meta-data (for exam-
ple, dmectory information) in a sequentially written log. The file
system data structures allow amy block of an existing file to be lo-
cated quickly in the log. For a full description see Rosenblum and

Ousterhout’s paper [9].

The log is stored in a chain of fixed-size segments, each of which
is a contiguous array of disk sectors. The system keeps track of the
current segment, which is the segment containing the-current end of

the log. When the current segment becomes full, the system picks

an unused segment, links it onto the end of the chain, ancl makes it

the current segment.

As files are deleted and rewritten, some of the data in the log
becomes obsolete. The space occupied by this data is reclaimed

by the segment cleaner, which is analogous to a copying garbage
collector in a programming language run-time system. The cleaner
chooses segments and scans them to determine which blocks are still
in use, appendhtg them to the log in the usual manner. Thle cleaned

segments are then unlinked from the log and made available for
reuse.

Some of the blocks written to the log contain tile data, while others
contain meta-data of various kinds, and the segment cleaner must

be able to tell which is which. To do this, it uses summary blocks,
which also appear in the log. These blocks contain a small amount of

identifying information for each item written to the log. At least one
summary block is written for each segment, and additional blocks

are used if the first is not large enough to describe all the data being
written. The summary blocks in a segment are linked together to

form a list.
Inodes are an important type of meta-data. Like a UNIXl inode,

a Sprite LFS inode contains information about its associated file,
including pointers to data blocks contained in the file. Whenever a

file is modified, an updated copy of its inode is placed in the log,

To avoid fragmentation, LFS places several inodes together in one

block when it can. LFS maintains an inode map, which allows the
current copy of any inode to be found quickly. The inode map is

also written to the log.
When LFS writes data to the log, it first builds a list of elerne-rztJ.

Each element represents a number of disk blocks, and the order of
the elements gives the order in which the blocks will appear on disk,

Each element is a logical uni~ such as a summary block, a block of
inodes, or file data. It is only when an element is added to the list

‘ UNtX is a registered trademark of tJNtX Systanr Laboratories, Inc.

3

that the system can tell where the data in the element will fall on the
disk.

Periodically, LFS writes a checkpoint, by flushing the current
state of in-memory data structures to the log and writing a pointer to

the end of the log in a fixed location on disk. When recovering from

crashes, LFS restores the file system state as of the last checkpoin~
and then rolls forward by following the chain of log segments written
subsequently.

3 Adding compression to LFS

3.1 Logical and physical disk space

As with the original Sprite LFS, our modified system divides the

physical dkk into fixed-sized segments chained together to form a
log. However, because of compression, each segment can contain

more user data than its physical size might suggest. Accordingly,

we allocate space within the segment in two ways: logical and

physical. The physical space represents real disk blocks, while the

logical space represents the space that would have been occupied
by the data if it were not compressed.

As each kilobyte of data is added to a segment, it occupies a
kilobyte of logical space, but may occupy less physical space. A
segment is declared full when either its physical or its logical space
is exhausted. (If logical space becomes full first, some physical

space is wasted. So logical space should be larger than physical

space by a factor greater than the maximum compression expected.)

Logical space is subdivided into compression blocks, which are
the units of compression and decompression. A logical disk address

consists of a segment number, a compression biock number within
the segment, and a sector number within the compression block. We

chose a physical segment sizeof512 KB ytes and a maximum com-
pression factor of four, so our logicaI segment size was 2 MBytes.

Our compression blocks are 16 KBytes, and our sector size is 512
bytes. Thus, our logical disk addresses fit easily in a 32-bit word

I segment (20 bits) compression block (7 bits) sector (5 bits)

3.2 Reading a logical block

Most of the modified file system deals exclusively in logical disk
addresses. For example, the disk addresses used by the file system
cache are logical, and so rue the disk addresses placed in inodes.

Physical addresses are needed only by modules at the lowest level
of the file system.

The module that reads a disk block given its logical address
needs a way to find the physical address of the compressed bytes.

We keep a logical block map for each segment, which is simply
an array indexed by compression block number, whose entries are
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Figure 2: Logical and physical views of a segment.

the physical byte addresses of the blocks relative to the start of the

segment. The block map is constructed in memory as the segment

is being compressed, and written to the end of the segment when

the segment is full. The maps me needed for all file reads, so they
are cached in memory whenever possible. Because our logical seg-

ments contain 128 compression blocks and our physical segments

are 512 KB ytes, our block maps each contain 128 four-byte entries,
which exactly fills one 512-byte disk sector. (The entries could
be reduced to two bytes each by restricting compression blocks to

begin on eight byte boundaries within the segment, but we did not
implement this optimization in our prototype.) The procedure for

finding the compressed data associated with a logical address is as
follows:

1.

2.

3.

4.

5.

Extract the segment number from the logical address. Use it

to find the logical block map for the segment.

Extract the compression block number from the address. Use

it to index the logical block map. This yields the physical byte
offset of the compressed data within the segment.

Examine the next errtry in the map, to find the start of the next
block. This determines how much data should be read from

the disk.

Read the compressed data from the disk and decompress it.

Extract the sector number from the logical address. Use it to
identi~ the desired sector within the decompressed block.

Unfortunately, tiis procedure reads and decompresses a full com-

pression block even if the caller wanted only some smaller uni~ such
as a file system block or a physical sector. We alleviate this problem
by caching the entire decompressed block in memory, rather than
just caching the requested sectors. The data could be placed in the
file system buffer cache, but for simplicity in our prototype, we
cached the last decompressed block within the read routine. Sprite

LFS reads files sequentially in 4 KByte units, so this simple caching
strategy typically achieves three hits for each 16 KByte compression

block when reading large files.
When the file system is reading non-sequentially, the additional

time to read a full compression block cannot be hidden by caching.

Fortunately, this time is small compared to the rotational latency.

The time needed to decompress the full block in software is sev-
eral milliseconds; it would be much smaller if decompression were

implemented in hardware.

3.3 Writing to the log

Conceptually, it is simple to write compressed data to the log. As
LFS constructs its element list, it can compress the data into a buffer,
one compression block at a time. When there is no more data to add

to the list, or when logical or physical segment space is exhausted,

it writes the buffer to disk and updates the logical block map for the
segment. In practice, however, the design was more complicated.

In Sprite LFS, the contents of certain kinds of element, such as
inode blocks, are allowed to change even after they are added to

the element list we will call these variable elements. For example,
when LFS puts the first inode in a segment, it allocates an empty

inode block and places it on the element list. When more inodes are
added to the segment, they are placed in this inode block. Eventu-
ally, it may become full, at which point another block is allocated
for inodes, Thus, an inode block may have inodes added to it long

after it has been placedon the element list. A similar strategy is used
for summary blocks-this technique allows LFS to make better use
of disk space when allocating small data structures.

In an unmodified LFS, these variable elements present no dif-
ficulty; the contents of elements can be changed freely until the

segment is written to disk, as long as their size does not change.
However, in our system, the clata for each element must be known

before the element can be compressed, and compression must take
place early enough to decide which elemen~ fit into the current
segment. We know of two ways to accommodate variable elements
in a compressed LFS.

One technique is to delay compressing variable elements until
just before the segment is written to disk. Enough physical space
must be reserved to hold the variable elements, assuming the worst-
case compression ratio (i.e. that they cannot be compressed at all).
With this approach, there is little benefit in compressing the variable
elements, since the space saved cannot easily be used.

A second technique is to delay compressing all elements as long as
possible, allowing variable elements to be changed freely until they
are compressed, but not afterwards. We do not compress elements as



they are added; instead, we reserve enough physical space for each

element to accommodate the worst-case compression ratio, until we

can no longer be sure the next element will fit into the physical

segment. Then we compress all the elements, correct the amount of

physical spaceremaining to reflect the actual compression achieved,
and mark the elements as no longer variable. When an inode block
is compressed, for example, it can be marked as full so that no

further inodes will be added to it. A new block will automatically
be allocated if needed.

The following pseudo-code illustrates the action taken for each el-
ement elem, containing size (elem) bytes. The worst.case
function returns the largest number of bytes that maybe needed to
represent the data when compressed.

if

}
if

}

(size (elem) > logical_space_left) {
goto segment_full

(worst_case(elem) > phys_space_left) {

compress all elements not yet compressed

increasephys_space_le ftbybytessaved
markinodeblocks full
if (worst_case(elem) > phys_space_left) {

goto segment_full

}

add elem to element list, without compression
reduce logical_space_left bysize(elem)

This approach is less general than the first, since it works only if
the code that modifies variable elements can be told to stqp doing

so at an arbitrary point however, it does rdlow variable elements to

be compressed.

Boththe summary blocks andinodeblocks ofSprite LFS could
rehandled using either technique. As amatter ofexpediency, we

used the first technique for summary blocks and the second for in-
ode blocks, andwechose nottocompress summary blocks. These
choices worked out fairly welh there are fewsummary blocks per

segmen~ so little compression is lost, and crash recovery is not
adversely affected (see Section 3.4). Inodeblocks tend to be less

full than in unmodified LFS—two or three blocks might Ibe allo-
cated per segment where only one would have been used before—

but little physical space is wasted because a partially-empty block
compresses exceedingly well. However, programs that read many

inodes(suchas thefiletree walkerfirtd) donotperform aswell; see
Section 6 below for details.

A third technique for dealing with variable elements is ID elim-

inate them. We could have modified Sprite LFS to fill summary
blocks and inode blocks completely before adding them to the el-
ement list. This would have been difficult, however, because the
logical disk address of a data block is not known until it is added to

the elementlis~ and the current LFS implementation needs [o know
the addresses of summary blocks and inode blocks as it fills them

in, foruseas pointers inother data structures. Also, LFS needsto
know that the summary block it is filling will fit into the current

segmen~not bespilled overinto the nextone. Therefore we chose
not to take this approach in our prototype.

3.4 Crash recovery

Our changes introduce anew problem in crash recovery. The system

could crash after a segment has been written, but before the logical
block maphasbeen committecl to disk. Onemight view ttnis as an
argument for writing the logical block map firs~ at the start of the
segment. However, LFS often fills a segment using a small number

of partial writes—these are used when it is necessary to commit
data to disk, but the data does not fill an entire segment. So, on

successive partial writes the segment’s block map would be updated
in place, and could therefore be lost in a crash. Alternatively, we

could allocate a new block map for each partial segment written,

but this would consume additional disk space and complicate the

process of reading and parsing the maps.

Fortunately, this problem is easy to solve. We maintain the

invariant that all segments on the disk have a valid logical block
map on disk, except possibly the current segment. When the file

system examines the disk after a crash, it must first read the current
segment, decompress it from the beginning, and reconstruct the
logical block map. This action is similar to rolling forward from a

checkpoint.

We do not compress the checkpoint areas or the summary blocks.
Together, these blocks contain enough information for LFS to find

the end of the log during recovery: we modified the segment cleaner

to read segments without using the block map in order to exercise

this algorithm.

3.5 Compression block size

We would liie to compress data in large blocks, but there are reasons

for choosing smaller blocks.

First, when reading bytes from the disk, decompression must start

from the beginning of a compressed block. Thus, the mean latency
for reading a randomly chosen byte on the disk is increased by the
time to read the block from the disk and decompress it. A 16 ICByte

block seems to be a reasonable choice, since it is large enough to

allow the compression algorithm to obtain most of the compression

available, but small enough that it adds only a few milliseconds
to the transfer time. In software on a DECstation 5000/2002, the
decompression time is 9 ms for the fastest algorithm we tried; in
hardware, decompression would be faster than the disk transfer, and

could be overlapped with it more easily.

A second issue is that applications often commit small amounts
of data to disk, resulting in poor compression. The obvious way to
overcome this problem is to employ a small amount of non-volatile

memory to postpone compression until more data is available. Alter-
natively, one can ignore the problem and write the data immediately,

because the segment cleaner will later combine the data from adja-
cent writes to form a full-sized compression block. This is similar

to the strategy used in unmodified LFS to recover unused space left
in inode and summary blocks after small amounts of data have been

committed.

The cleaner saves space in other minor ways too. In our sys-
tem, when two compression blocks are written together, no gap
need be left between them. But when two blocks are forced to

disk independently, the second must start on a sector boundary to

avoid the danger of damaging previously written data. This causes
fragmentation that is removed later by the segment cleaner.

3.6 Free space

One problem with using compression in a file system is that it
leaves the naive user open to surprises. For one thing, it is no longer
obvious how to report the amount of space remaining on the disk!
It seems best to report the amount of data that could be put on the

disk assuming worst-case compression (i.e. no compression at all),
so that the user is more likely to be agreeably surprised than upset.

A more wonying problem is that actions that do not consume disk

space in conventional file systems may do so when compression is
used. For example, if a block in a tile is overwritten, the new data

may not compress as much as the old data. When compression is
used, such operations cannot be allowed when the disk is full.

2DECstation is a tradmrark of Dignal Equipment Corporation
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Compressor Compression speed Decompression Speed compression
KBytes/s KBytes/s ratio

Alttorithm 1 1700 2200 6170
AI~orithm 2 590 670 519’0

LZRW1 -A 910 2400 52%

LZRW3-A 360 1500 48%

compress 250 410 50%

2’00 -h 45 390 36%

This table shows tke performance of six compression algorithms on 240 MBytes of data from a

log-structured file system containing Sprite operating system source and binaries. The figures

give the compression speed, decompression speed, and the ratio of output size to input sire
(compression ratio). Compression was performed on 16 KByte blocks. Compression speed is

in kilobytes of uncompressed data processed per second of CPU time, given to two significant

figuies. Times were measured on a DECstation 5000/200.

Table 2: Comparison of compression algorithms.

3.7 File-specific compression

Different compression algorithms are better suited to different data,
and so one might like to choose the algorithm to be used for each file.

One way to do this in our system would be to place some additional
hints in each inode. The LFS module that places file data blocks into
the element list could use the hints to mark elements for compression

by different algorithms. One possible use of such a scheme would
be to indicate that certain files should not be compressed at all;
this would free those files from the restriction noted in the previous

subsection.

While file-specific compression could easily be applied to our
current software implementation, it would certainly complicate the

hardware design described in Section 5. Moreover, only large files
would benefit from this approach, since only one compression al-
gorithm would be used for each 16 KBytes of data.

4 Compression algorithms

A wide variety of compression algorithms could be used for this

application, but fast, simple algorithms are clearly preferable. One
suitable algorithm was introduced by David Wheeler in his red

and exp programs [13]; similar algorithms were also described by
Raita and Teuhola [8]. Williams has developed algorithms that are

particularly fast for decompression [15, 16].

The simplest form of Wheeler’s algorithm (which we will call

Algorithm 1) is as follows. A hash table t, whose entries are bytes,
is initialized to a known state, such as all zeroes. For each input byte
c, the compressor constructs a hash value h based on the preceding

three bytes. The value found in table entry t [h] is called thepredicted
characler. If r![h] = c, the compressor outputs a token indicating a
correct prediction, If t[h] # c, the compressor sets the entry t[h]
to be c, and outputs a token indicating that prediction failed and

that the input character was e. If this algorithm expands the block,
the compressor outputs a token indicating that no compression has
occurred, followed by a copy of the original data.

The decompressor maintains a similar hash table t. For each
token read from the compressor, the decompressor constructs a

hash value h based on the last three bytes written to its output. The
hash function and initial setting oft must be identical in compressor
and decompressor. If the token indicates a successful prediction,
the decompressor reads and outputs the byte t[h].If it indicates
prediction failure with the input chmacter c, the decompressor sets

the entry i![h] to c and outputs c.

In our tests, using Sprite system binaries and an operating system
source tree, this algorithm predicts around 5090 of the bytes ht a

typical 16 KByte block and compresses it down to 10 KBytes. We
used a modest hash table size (n = 4096 entries) and a simple
hash function (h = (256c3 @ 16CZ @ ct ) mod n, where ci is the
ith character preceding the current character c, and @ is bitwise

exclusive-or), and we chose to encode a correct prediction with one
bit and a missed prediction with nine bits.

An improved version of the algorithm (which we will call Algo-
rithm 2) adds a second hash table holding an alternative prediction,
and a token to indicate a correct prediction in the second table. In
addition, it applies Huffman coding to the stream of predictions and

misses, instead of using a fixed-length code for misses. Our imple-

mentation uses a static Huffman code computed from frequencies

of bytes seen on a typical UNIX disk.

Besides the algorithms based on Wheeler’s ideas, we tried the

LZRWI -A and LZRW3-A algorithms due to Williams. A full de-

scription and implementation are available elsewhere [15, 16], so
we omh the details here.

Table 2 illustrates the performance of these algorithms on data
typical for a UNIX program development environment. For com-

parison, we include figures for the popular compress utility, which
uses the LZC algorithm, and the zoo archiver, which uses the LZSS

algorithm. The table shows that the algorithms we chose are quite
fast, but better compression could be obtained by sacrificing speed.

Bell, Witten, and Cleary give a more thorough comparison of

compression algorithms and their effectiveness on different sorts of
data [3]. They also describe the LZC and LZSS algorithms.

5 LFS and compression hardware

We have arranged our system so that the compression algorithm can

be changed easily. An obvious improvement would be to replace
the compression routine with a piece of hardware. As noted in the
introduction, this would reduce the performance penalty exacted
by software compression, and would increase the effective disk

transfer rate. We have not yet integrated compression hardware into
our prototype, but in this section we discuss how it might best be

done.

5.1 System changes

The simplest way to add hardware compression to our design would
be to build a DMA device that reads uncompressed data from one

buffer and writes compressed data to another (and vice versa), and
use it as a direct replacement for our software compression module.

Consider a disk with a transfer rate of d MBytes per second, and a
compressor that achieves compression ratio r at a rate of c MBytes

6



rSystem Time for phase (seconds) Total
MakeDir copy ScanDir ReadAll Make

unmodified LFS 1+1 4*1 4+1 44zl 58+2 71+2

no compression 0+1 5+1 4+1 4+1 64+2 78+1

Algorithm 1 1+1 5+1 3+1 5+1 63&2 77+2

Algorithm 2 1*1 6+1 4+1 5*1 67+2 83+2

LZRW1 -A 1+1 5+1 3+1 5*1 65+2 79+1

LZRW3-A O*1 5+1 3+1 5+1 66+1 80+1

This table shows the time in seconds for the Andrew file system benchmark running on six

LFS configurations: unmodified LFS, and our modified LFS with five different compression

algorithms. The values given are the mean of three runs, each on a newly rebooted and otherwise

idle DECstation 5000/200 using an RZ55 disk.

Table 3: Running time of Andrew benchmark.

per second. WMout compression, the time to transfer n M13ytes is
n/d seconds. With a separate hardware compressor, this becomes

nic + nr/d seconds. (Seek and rotational delays are unaffected.

We assume that DMA setup times are negligible for blocks of more

than a few kilobytes.) We would like to reduce the total time, which

implies that c > d/(1 – r). For example, when r = 0.5, d = 2
MBytes per second, c must exceed 4 MBytes per second to improve
the speed of disk writes.

A drawback of this approach is that data traverses the bus three
times on its way to disk-once uncompressed, and twice com-

pressed. Also, compression and decompression are serialized with
disk transfer, not overlapped. These problems suggest that the com-
pressor should be placed in the disk controller, but doing so Iequires

more changes to LFS, and quite specialized hardware.

As previously noted, LFS often needs to place the logical address
of one disk block into another disk block that is being written in the

same disk transfer. (For example, it needs to put the locations of file

blocks into inodes.) But it is not possible to tell whether a particular
disk block will fit in the current segment until compression has taken

place, so we cannot determine what data should be written until the
data has been transferred to the controller for compression.

The first step to solving this problem is to modify LFS so that each

write contains no forward references to disk blocks. For example,
in any particular write, inode blocks would always follow the file

data blocks they point to, and inode map blocks would follow the
inode blocks they point to. Once forward references are eliminated,

our problem can be solved by placing a large buffer in the disk

controller to hold the compressed data. The tile system can monitor
the status of the buffer as it writes more data, and commit [he data
to disk only after compression has taken place.

We can save the cost of the buffer and overlap the compression

with the disk transfer by noticing that, in the absence of forward

references, any prefix of a write is valid. Thus, the file system can

prepare a larger amount of data for writing than will actually fit in
the current segment, and can instruct the controller to truncate the
write if it occupies more than the amount of physical space available.

If a write is truncated, the file system may have to recalculate the
contents of the inode blocks and inode map blocks before writing

them, but none of the blocks that were actually written need be
changed.

To achieve complete overlap between the compression and the
disk transfer, the compressed data stream must beat least as fast as
the disk, or the disk will be starved of data. That is, cr > d. This
could be done by artificially padding the compressed data whenever

the data is compressed too well. In this case, the time to transfer n
MBytes of data becomes m-mz(n~/d, n/c). Thus, for a sut%ciently
fast compressor, the transfer time is improved by the compression
ratio.

Finally, a disk controller containing a compressor must inform
the software where each compressed block fell on the disk. Ideally,

it would also construct the logical block map and append it to the
data being written, in order to avoid an extra disk transfer to place

the map at the end of the segment.

5.2 Compression hardware

Our Algorithms 1 and 2 (described in Section 4 above) can be

realized quite easily in hardware at speeds over 10 MBytes per
second. The hash function requires one fixed-distance shift and one
exclusive-or per byte. Adequate hash tables can be implemented by
RAMs arranged to provide 16K words of 16 bits each. RAMs with

a block erase capability are commercially available; these allow the
tables to be reset to zero in a few cycles at the start of each block.

Both hash table lookups needed for Algorithm 2 can be implemented

with a single memory read, and the Huffman table lookup can be

done in parallel, so only one memory read and one memory write
are required per byte of data processed. In Algorithm 2, a barrel

shifter is needed to pack the variable length codes into bytes.

We have described this implementation to illustrate that simple,
low-cost hardwme can provide adequate compression at high speed.

More complex, slower algorithms are already available in chips
running at 10 MBytes per second [1, 4].

6 Performance of prototype

Performance was measured on a DECstation 5000/200, an 18
SPECmark machine based on a 25 MHz MIPS R3000 CPU. The

disk was an RZ55, a SCSI disk with a maximum transfer rate of

1.25 MBytes per second, rotating at 3600 rpm, with a 16ms average

seek time. During the timed tests, the dkk was never more than
zs~. full, so the LFS cleaner did not run.

Table 3 shows how our software compression affects the per-

formance of the system when executing the Andrew file system
benchmark [7]. It shows times for the unmodified LFS system,

and for our modified system using five different compression algo-
rithms. One of the compression algorithms is the null algorithm,

implemented by a memory-to-memory copy.

The performance of the modified system with no compression is
worse than that of the unmodified system because of two short-cuts
that we took in implementing our prototype. First we chose to write

the logical block map to disk as a separate 1/0 operation, rather than

appending it to the write that was completing the segment. We also
introduced an extra copy operation for all data written to simplify
the compressor implementation. Both of these short-cuts could be
eliminated with some additional effort.
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Time for test (seconds)

System Copy file Tree walk
Elapsed CPU Elapsed CPU

unmodified LFS 105 * 1 15+1 2.5 + 0.1 0.5 + 0.1
no compression 128 + 1 17+1 4.2 + 0.1 0.7+ 0.1

Algorithm 1 147 * 1 43&2 4.2 + 0.1 1.6+ 0.1

Algorithm 2 206 * 2 80+4 5.8 + 0.2 3.1 +0.1
LZRW1 -A 154+2 35+4 3.9+ 0.1 1.4+0.1

LZRW3-A 191 + 1 48+7 4.6 + 0.1 1.9+0.1

This table shows elapsed time and kernel CPU time in seconds for two tests, mnrung on the
same six LFS configurations used m Table 3. In ttte first test, a 32 MByte file was copied and
flushed to disk—both source and destination were on the file system under test. In the second,

jirid was used to walk a directory tree of 400 files. The values given are the mean of three runs,

each on a newly rebooted and otherwise idle DECstation 5000/200 using an RZ55 disk.

Table 4: Time for file copy and tree walk.

The table shows that Algorithm 2 has the most impact on per-

formance; it adds 6% to the total time to execute the benchmark
(taking our modified system with no compression as the basis for

comparison). Here, compression is generally asynchronous due to
write-behind in the file block cache. Since only a few megabytes of

files are used in the Andrew benchmark, the files are decompressed
only once (in the Copy phase) and reside in the file system’s buffer
cache thereafter.

Table 4 shows the elapsed time and kernel CPU time for copying
a 32 MByte file, and for walking a directory tree with the UNIX
find utility, examining every inode. The effect of compression
on performance is more noticeable, because these tests involve no

user computation. Here, file cache misses cause synchronous com-
pression and decompression operations. The slowest compression

algorithm adds 60% to the time taken to copy a large file, and about
40~o to the time for the tree walk,3

As a check on the compression figures of Table 2, we measured

the number of physical segments consumed by storing a subtree of
files containing 186 MBytes of operating system source and binaries.

The results agree closely with our expectations; see Table 5.

Segments consumed

Svstem Absolute I Relative to.
unmodified LFS

unmodified LFS 380 100%

w
This table shows the nnmber of 512 KByte segments consumed by

storing 186 MBytes of operating system source and binaries, again on

the six LFS configurations used in Table 3. The first column gives the
absolute number of segmeuts; the second gives the number relative to

unmodified LFS.

Table 5: Compression obtained on prototype.

Besides measuring the performance of the system under artificial
loads, we also used the system for simple program development to
see whether the performance decrease was perceptible. For Algo-
rithm 1, the system seemed as responsive as an unmodified system.
However, with the slower algorithms we observed pauses after file

3The elapsed time for ttre tree watk is less for LZRW1 -A than for the nutt compres-

sion algorithm. We are stitl investigating the cause.

system activity. These pauses occurred when the system flushed

large amounts of dirty data to disk, at which point the compression
code was invoked. It appears that Algorithm 1 is fast enough to
make these pauses unobtrusive during normal work, but the other
algorithms are not. It maybe possible to eliminate these pauses by

forcing the compression task to yield the processor periodically.

7 Comparison with other work

The Stacker4 system uses a conventional MS-DOSS file system for-
mat, but intercepts reads and writes in the device driver and performs
compression and decompression on 4 or 8 KByte clusters [14]. A

defragmentation utility can be run periodically to improve the lay-

out of the files on the disk if updates cause performance to degrade.
Stacker demonstrates that on-line compression can be applied to a

conventional file system with acceptable performance. But as we
have shown, compression fits more easily into a log-structured file
system. Moreover, LFS allows us to pack compressed blocks next

to one another without any alignment constraints, which improves
the effective compression ratio. The cleaner automatically reduces

fragmentation, without arty additional support. Even meta-data can
be compressed in LFS, without significant impact on the file system

code.

The Icebergb system also compresses and decompresses as data

is read and written, this time in devices that emulate IBM disk

drives [6, 12], Compression is performed in hardware, using a
variant of the Lempel-Ziv algorithm [17]. Iceberg uses a technique

termed dynamic mapping to avoid problems with layout and frag-

mentation. As in LFS, new data does not overwrite old data, and a

background task is responsible for collecting free space on the disk.

Unfortunately, details about Iceberg are not publicly available.

Cate and Gross advocate a two-level file system, in which files

that have not been accessed recently are compressed by a daemon

process [5]. In their ATTIC system, a compressed ftle is decom-

pressed when it is first accessed. Subsequent accesses use the de-
compressed file; the file is not compressed again until another period

of inactivity is detected. This approach has the advantage that only
decompression is done on-line, and so only the decompression algo-

rithm need be fast this allows the use of algorithms that can achieve
more compression than those used in our system. (See Table 2, for
example.) In their prototype, a file is compressed or decompressed
as a uni~ which may introduce uncomfortable delays when access-
ing very large files. Our system avoids such delays by compressing

4Stacker M a trademark of Stat Electrorucs.

‘MS-DOS is a registered trademark of Microsoft Corporation

61ceberg M a trademark of Storage Technology Corporation.
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and decompressing in small blocks, yet avoids fragmentation by

exploiting the structure of the log.

One can view our system as a special case of the general scheme
that Cate and Gross describe; our cache of recently accessed files

is the operating system’s file block cache, This thought leads in-

evitably to the idea of a hierarchy of caches, with different levels of

compression.

Taunton describes a system in which programs are decompressed
automatically by the operating system as they are demand-paged

into memory [10]. Compression is invoked explicitly by the user;
each page is compressed separately by a simple algorithm, and
stored in as few disk blocks as possible. This works well in the

system described only because the page size far exceeds the file

system block size, which is not the case in most systems; however,

Taunton also explains how his scheme can be adapted to more typical

systems. The scheme benefits from concentrating on executable
files, which are read by few things besides the operating system

itselfi no attempt is made to make the compression transparent to
other applications.

AutoDoubler7 [11] is a commercial system that uses a strategy
similar to Cate and Gross’s proposal. It uses slow off-line compres-

sion and fast on-line decompression to provide transparent access

to compressed files,
There are many other products similar in implementation to

Stacker and AutoDoubler, using both hardware and software com-

pression. The include Expanz! Pluss, DoubleDiskg, SuperStorlO,

and XtraDriv~l.

8 Summary

We have demonstrated a factor of two reduction in disk space con-

sumption by adding on-line compression and decompression to a

log-structured file system used to store system binaries and an op-
erating system source tree. Even using software compression, the

performance of our system is acceptable on a DECstation 5000/200,
The design can be adapted to use hardware compression devices,’

either combined with a disk controller or packaged separately. Com-

pression chips are available that run faster than most disk transfer
rates [1, 4]. Thus, the performance of the file system can actually be

improved by adding specialized hardware, since the effective disk
transfer rate can be increased by as much as the compression factor.

We believe that this represents a promising technique for com-
bining data compression with the file system. In addition to their

other advantages, log-structured file systems provide an environ-

ment in which compression can be used without the complexities

of fragmentation and allocation that complicate more conventional
approaches.
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