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Authors’ Abstract 
We describe a design for security in a distributed system and 

its implementation. In our design, applications gain access to secu-
rity services through a narrow interface. This interface provides a 
notion of identity that includes simple principals, groups, roles, and 
delegations. A new operating system component manages princi-
pals, credentials, and secure channels. It checks credentials accord-
ing to the formal rules of a logic of authentication. Our implemen-
tation is efficient enough to support a substantial user community. 

1 Introduction 
We describe a design for security in a distributed system and a 

particular implementation of this design. We present both the ex-
ternal interface and the major internal interfaces of our implemen-
tation. A formal logic [Abadi et al. 1993b; Lampson et al. 1992] 
guided our design. We explain the correspondence between im-
plementation and logic, in particular how an authentication creden-
tial represents a formula and how an authentication is a proof. We 
discuss our experience and some performance results; the imple-
mentation is efficient enough to support a substantial user commu-
nity. 

For our purposes, a distributed system is a collection of nodes 
connected by an insecure network; each node is a computer run-
ning an operating system that is trusted for local security. The set-
ting for our implementation is a distributed system where each 
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node is a Firefly shared-memory multiprocessor running the Taos 
operating system [Thacker et al. 1988]. Taos is completely multi-
threaded, yet also implements a protected address-space model 
close enough to that of Unix that it can run most Unix binaries. 
Remote procedure call is the primary means of interprocess com-
munication. Although Taos has been a convenient test vehicle, our 
only real dependence on it was that we could adapt it to our needs. 

We use the access control model of security [Lampson 1974] 
extended with compound principals [Gasser et al. 1989]. In this 
model there are objects (files, printers, etc.), requests, and princi-
pals (users, machines, etc.) that utter requests. Each object has a 
guard or reference monitor that examines each request and decides 
whether or not to grant it. The request must first be authenticated 
to identify the principal that uttered it, and then authorized only if 
the principal has the right to perform the requested operation on 
the object. The pieces of evidence that identify the uttering princi-
pal are called credentials. Compound principals provide a precise 
and uniform representation for the sources of requests in a distrib-
uted system, including users, machines, channels, programs, dele-
gations, roles, and groups. 

In each node, a new operating system component called the au-
thentication agent manages compound principals and their creden-
tials. Applications access security services through a narrow inter-
face to the local agent. The agent implements all credential ex-
changes and validations, communicating with agents in other 
nodes when necessary and checking credentials according to the 
formal rules of the logic. The agent uses a distributed certification 
database for names, group memberships, and executable images. 
From the underlying operating system it needs only a bidirectional 
secure channel to each application, and global names for the chan-
nels between the application and the outside world. 

Many systems that offer distributed security do so entirely at 
the level of the application, either to avoid changing the kernel or 
because most operating systems do not support a coherent model 
of user identity throughout the network. Our basic design can be 
implemented in the same way, with the authentication agent linked 
into each application as a library. 

In fact, however, our distributed security is part of the operat-
ing system. This has one major advantage: the notion of identity or 
principal is built in at a very low level and is represented consis-
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tently everywhere. There is no distinction between local and re-
mote principals. Minor advantages are that it is easy to provide the 
necessary secure channels between the authentication agent and 
applications, and easy for a child process to inherit the authority of 
its parent. The trusted computing base does not get any bigger, be-
cause the operating system must be trusted anyway. 

The next section reviews the logic. Section 3 presents the ap-
plication programming interface (API) to Taos security. Section 4, 
the heart of the paper, describes the implementation in detail. Fi-
nally, Section 5 discusses our experience with the system in prac-
tice. 

We do not address either denial of service or the kind of non-
disclosure security policies that are based on an information flow 
model. We touch only briefly on the problems of compatibility 
with other security mechanisms, such as Kerberos [Steiner et al. 
1988] and OSF DCE Security [Open Software Foundation 1992]. 

2 Background 
In this section we explain our treatment of encryption and time, 

sketch the rules of our authentication logic, and give an extended 
example of its use. Other papers treat these matters in detail [Abadi 
et al. 1993b; Lampson et al. 1992]. 

We use shared key encryption to secure short-term node-to-
node channels. All other encryption is public key [Rivest et al. 
1978] and is done only for integrity, not for secrecy. We write K 
and K-1 for the public and secret keys of a key pair. We say that a 
message encrypted with K-1 is signed by K so that we need to men-
tion only the public key. 

Our authentication system relies on signed statements called 
certificates. These form the building blocks of credentials, which 
are proofs of authenticity. We view certificates and credentials 
both as logical formulas and, in the implementation, as data. 

Time does not appear explicitly in the logic; formally, assump-
tions and proofs concern only a given, implicit instant. In our sys-
tem, on the other hand, a time interval qualifies each certificate. A 
certificate is valid only for the specified interval. Therefore, the 
conclusion of a proof is valid only for the intersection of the inter-
vals of all the certificates used in the proof. Since these certificates 
typically originate at different nodes, it is important that nodes 
have loosely synchronized clocks. For synchronization we do not 
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have a secure time server, but instead rely on the clocks of individ-
ual nodes. 

However, we can easily tolerate a one-minute skew because 
certificates are valid for at least a few minutes. The most obvious 
effect of a large skew is that authentication becomes impossible 
because the validity interval of a formula is empty or does not in-
clude the current time. If a certificate originates at a node whose 
clock is much later than real time, or is used at a node whose clock 
is much earlier, it is also possible that the certificate will be mis-
takenly considered valid even though it has expired. 

2.1 Some notations and rules 
We write A says S to mean that principal A supports the state-

ment S (an assertion or a request). We write A ⇒ B when A speaks 
for B, meaning that if A makes a statement then B makes it too:1 

if   (A ⇒ B) and (A says S)  
then                  (B says S) 
We think of A as being stronger than B. The ⇒ relation is a 

partial order; that is, it is reflexive, antisymmetric, and transitive. It 
obeys many of the same laws as implication, so we use the same 
symbol for it. Principals include: 

• Simple principals. Users, machines. 
• Channels. Network addresses, encryption keys. If S appears 

on channel C then C says S. In particular, K says S represents a 
certificate containing S and signed by K. A channel is the only kind 
of principal that can directly make a statement, since a message 
can arrive only on a channel. 

• Groups. Sets of principals. If A is a member of G then A ⇒ 
G, so A says S implies G says S. A group can be thought of as the 
disjunction of its members. 

• Principals in roles. We write A as R for A in role R (for ex-
ample, Bob as Admin for Bob acting as an administrator). A princi-
pal can adopt a role in order to reduce its rights [Lampson et al. 
1992, Section 6]. That is, A ⇒ (A as R). 

                                                 
1 Although our logic includes propositional logic, in this report we do not de-
scribe any formal notations or rules for propositional connectives. Instead, we 
use English keywords, like “if” and “then”, and informal reasoning. 
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• Conjunctions of principals. We write A ∧ B for the conjunc-
tion of A and B. If both A says S and B says S then (A ∧ B) says S 
as well. 

• Principals quoting principals. We write B | A for B quoting A. 
If B says A says S then (B | A) says S. 

• Principals acting on behalf of others. We write B for A for B 
acting on behalf of A. The principal B for A is stronger than B | A, 
since (B for A) says S when B says A says S and in addition B is 
authorized to act as A’s delegate. 

The handoff axiom represents the transfer of authority: 
if A says (B ⇒ A)  
then       (B ⇒ A) 
In other words, we believe that B speaks for A when A says so. 

Therefore, if A says (B ⇒ A) and B says S then A says S. Simi-
larly, we have a delegation axiom: 

if A says ((B | A) ⇒ (B for A))  
then       ((B | A) ⇒ (B for A)) 
It means that we believe A when it says that B | A speaks for B 

for A, that is, that B can act as A’s delegate.2 Therefore, if A says 
((B | A) ⇒ (B for A)) and B says A says S then (B for A) says S. 
Comparing the result (B for A) says S with that of a handoff, A 
says S, we note that it mentions B: both delegate and delegator 
lend some of their authority, and the identity of the delegate is not 
forgotten. 

The operations as, ∧, |, and for are monotonic with respect to 
⇒: if B ⇒ B' and A ⇒ A' then 

(B as A) ⇒ (B' as A')  
(B ∧ A)  ⇒ (B' ∧ A')  
(B | A)  ⇒ (B' | A')  
(B for A)  ⇒ (B' for A')  

2.2 Logic and authentication 
This section gives a simplified example of how logic can be 

used to reason about authenticating compound principals; there is 
more detail in later sections. In the example, a machine Vax4 is 
booted with an operating system OS. Together, Vax4 and OS form 
a node WS. A user Bob logs in to WS. We consider the reasoning 
                                                 
2 This axiom is not included in [10], but is suggested in [2]; we adopt it for sim-
plicity. 
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necessary to authenticate requests from this login session to a file 
server FS. 

In order to establish credentials, Vax4 must possess a secret. 
For example, if (Kvax4, K-1

vax4) is a public key pair, then K-1
vax4 is a 

suitable secret. Let K-1
vax4 be available only to Vax4’s boot firm-

ware, not to any of the operating systems it can run. At boot time, 
K-1

vax4 is used to sign a boot certificate that transfers authority to a 
newly generated key Kws; in the logic, this certificate reads: 

(Kvax4 as OS) says (Kws ⇒ (Kvax4 as OS)) (1) 
We call Kws the node key for WS. It speaks not for Kvax4 but for a 
weaker principal WS = (Kvax4 as OS), that is, Kvax4 in the role of the 
boot image. After booting, WS gets the boot certificate and K-1, but 
does not know K-1

vax4. 
We treat login as a specialized form of delegation. When Bob 

logs in, K-1
bob is used to sign a delegation certificate that transfers 

authority to WS: 
Kbob says ((Kws | Kbob) ⇒ (Kws for Kbob)) (2) 
Consider now a request from the login session to a file server 

FS. There must first exist a channel Cbob over which to issue re-
quests. As observed by FS, a request appears as a statement RQ on 
this channel: 

Cbob says RQ (3) 
To back RQ, WS supplies (1) and (2), and writes a channel certifi-
cate: 

(Kws | Kbob) says (Cbob ⇒ (Kws for Kbob)) (4) 
This represents a handoff from the node to the channel. 

By applying the delegation axiom to the delegation certificate 
(2), FS can deduce 

(Kws | Kbob) ⇒ (Kws for Kbob) 
so the channel certificate (4) implies 

(Kws for Kbob) says (Cbob ⇒ (Kws for Kbob)) (5) 
Further, FS can deduce 

Cbob ⇒ (Kws for Kbob) by applying the handoff axiom to (5), so 
the request (3) yields 

(Kws for Kbob) says RQ (6) 
And FS can deduce 

Kws ⇒ (Kvax4 as OS) 
by applying the handoff axiom to the boot certificate (1), so (6) 
yields 

((Kvax4 as OS) for Kbob) says RQ (7) 
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by monotonicity. 
We still must prove that Kvax4 and Kbob correspond to Vax4 and 

Bob. To do this we must trust some certification authority or CA. 
Trusting a CA with known key Kca means believing that Kca speaks 
for any principal; in particular, Kca ⇒ Vax4 and Kca ⇒ Bob. Thus, 
FS can use the certificates 

Kca says (Kvax4 ⇒ Vax4) 
Kca says (Kbob ⇒ Bob) 

and the handoff axiom to obtain 
Kvax4 ⇒ Vax4 
Kbob  ⇒ Bob 

then (7) to conclude 
((Vax4 as OS) for Bob) says RQ 

by monotonicity. That is, FS knows that Vax4 running OS requests 
RQ on behalf of Bob. The access control algorithm given in 
[Lampson et al. 1992, Section 9] can now determine whether the 
request should be granted. 

The remainder of the paper describes how this authentication 
logic is implemented in Taos. 

3 An API for Authentication 
The logic is rather complex to be presented directly through a 

programming interface. Instead, Taos defines a simple and consis-
tent set of security services. They are based on an abstract datatype 
Prin that represents principals, and a subtype Auth that represents 
principals that processes can speak for. 

Section 3.1 gives the interface for sending and receiving au-
thenticated messages; that is, it explains how a process that can 
speak for a principal P can make another process believe P says S. 
Section 3.2 gives the interface for authenticating and authorizing 
requests. Section 3.3 gives the interface for managing Auths; that 
is, it explains how a process can change the set of principals that it 
can speak for. 

For brevity, we omit exceptions from the signatures of proce-
dures. 

3.1 Authenticating messages 
We begin with a simplified version of the interface for sending 

and receiving authenticated messages, and improve it later in this 
section: 
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PROCEDURE Send(dest:Address; p:Auth; m:Msg);  
PROCEDURE Receive(): (Prin, Msg); 
Send transmits the statement p says m to the process at address 

dest. Symmetrically, if Receive returns (p,m), some process that 
speaks for p has invoked Send(dest,p,m); in other words, the re-
ceiver can believe that p says m. 

The interface has no notion of a principal that a process speaks 
for by default. Instead, the Auth argument to Send requires the 
process to specify explicitly the principal that is uttering each mes-
sage. Often a process has only one Auth, and we could have added 
a “working authority” to the process state and a SetWorkingAuth 
procedure (by analogy with the working directory), and dropped 
the Auth argument to Send or made it optional. This is similar to 
what Unix does with the effective uid. Or, to accommodate multi-
threaded programs, we could have made the working authority part 
of the thread state. 

This simplified version of the interface is unsatisfactory be-
cause it ties authentication and communication together too 
closely. To separate them, we make explicit the relation between a 
channel c and the principal p that it speaks for. 

We assume that secure channels are available. A channel is se-
cure if every message received on it comes from the same process. 
We might also require messages on the channel to be secret, that is, 
received only by certain processes; this is a simple extension that 
we will not discuss further. An abstract datatype Chan represents 
secure channels. 

To transmit an authenticated message, a process sends it on a 
secure channel, the receiver gets the channel c on which the mes-
sage arrives, and a new operation GetPrin returns the p that the 
channel speaks for. In other words, c names the principal p. 

For this to work, a given channel must speak for at most one 
principal, so we need a cheap way to make channels. Our method 
is to take a single channel c on which a process can send securely, 
and then to multiplex many subchannels onto c, one for each prin-
cipal that the process speaks for. Sending and receiving is done on 
these subchannels. 

Our second try at an interface is thus: 
PROCEDURE GetChan(dest:Address): Chan;  
PROCEDURE GetSubChan(c:Chan; p:Auth): SubChan;  
PROCEDURE Send(dest:SubChan; m:Msg);  
PROCEDURE Receive(): (SubChan, Msg);  
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PROCEDURE GetPrin(c:SubChan): Prin; 
The sending process first calls GetChan to get a secure channel 

c to the process at dest and then calls GetSubChan(c, p) to get a sub-
channel that speaks for p. The receiver calls GetPrin to recover a 
Prin. 

The actual Taos interface has a further refinement: a process 
can utter many statements, perhaps made by different principals, in 
a single message. For example, one call could pass an array of 
names of files to delete and a parallel array of principals that are 
authorized to do the deletions. To make this work, we must reveal 
the addressing mechanism for subchannels: it is an integer called 
an authentication identifier or AID. The sender calls GetAID to learn 
the AID for a principal and sends it as an ordinary data value in the 
message. The receiver pairs the channel on which the message ar-
rives with this AID to recover the speaking principal. So the actual 
Taos interface is: 

PROCEDURE GetChan(dest:Address): Chan;  
PROCEDURE GetAID(p:Auth): AID;  
PROCEDURE Send(dest:Chan; m:Msg);  
PROCEDURE Receive(): (Chan, Msg);  
PROCEDURE GetPrin(c:Chan; aid:AID): Prin; 
In Taos, the messages exchanged in this way are normally the 

call and return messages of remote procedure calls. RPC marshals 
an Auth parameter p by sending the result of Get AID(p), and unmar-
shals aid from channel c as the result of GetPrin(c, aid). It also gets 
the channel from the RPC binding, and of course it encapsulates 
the Send and Receive calls. The result is that the RPC client can 
simply use Prins and Auths as arguments and results, and does not 
have to call any of the procedures in this interface. This works for 
both calls and returns, so mutual authentication is possible. 

3.2 Basic authentication and authorization 
The receiver of an authenticated message calls GetPrin to find 

the Prin p that represents the sender of the message. It can then use 
Authenticate to turn p into a string name. 

PROCEDURE Authenticate(p:Prin): TEXT; 
The result of Authenticate can represent a compound principal 

such as Bob as admin, or it can be a simple name. Simple names 
are convenient for existing applications; Section 4.5 describes the 
somewhat ad hoc rules Taos uses to reduce compound principals to 
simple names. 
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The purpose of authentication is to tell the authorization ser-
vice the source of a request. We therefore introduce another ab-
stract datatype ACL to represent access control lists, and the au-
thorization operation Check to determine whether acl grants access 
to p. 

PROCEDURE Check(acl:ACL; p:Prin): BOOL; 
Check both hides the details of naming and allows a convenient 

and efficient cache of recent successful authorizations. 
Taos also offers operations for constructing and examining 

ACLs, but they are beyond the scope of this paper. 

3.3 Managing principals 
A Taos process can obtain an Auth in five ways: 
• by inheritance from a parent process, 
• by presenting a login secret, 
• by adopting a role, 
• by delegating rights, or 
• by claiming delegated rights. 
All but the first of these produce a new and unique Auth. In par-

ticular, each user session on a machine is represented by a different 
Auth. The interface for managing Auths is: 

PROCEDURE SelfQ: Auth; 
PROCEDURE Inheritance(): ARRAY OF Auth; 
PROCEDURE New(name, password: TEXT): Auth;  
PROCEDURE AdoptRole(a:Auth; role:TEXT): Auth;  
PROCEDURE Delegate(a:Auth; b:Prin): Auth;  
PROCEDURE Claim(b:Auth; delegation:Prin): Auth; 
PROCEDURE Discard(a:Auth; all:BOOL); 
Self returns a default Auth for the current process. The default is 

specified when the process is created. Inheritance returns all the 
Auths that the process inherits from its parent. 

New is used to generate entirely new credentials. The parame-
ters describe a user name and a user-specific secret sufficient to 
generate the credentials described in Section 4.3. The result is an 
Auth that represents node for name, where node is the local node. 
This result reflects the fact that the user cannot make a request 
without involving the machine and the operating system. 

AdoptRole weakens an authority by applying a role. If a repre-
sents A, then the result of AdoptRole(a,role) represents A as role. 

Roles are used in two ways in Taos. First, a process can restrict 
its rights to those necessary to fulfill a particular function by call-
ing AdoptRole on one of its existing Auths. Second, a Taos node can 
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give some of its rights to a trusted process. Taos uses secure load-
ing to determine whether an executable image is certified (see Sec-
tion 4.4). After loading a certified image, Taos calls AdoptRole to 
create an Auth weaker than its own, which it hands off to the new 
process (for example, AdoptRole(Self(), “telnet-server”) for a login 
daemon). This mechanism bears some resemblance to Unix setuid 
execution. However, in Taos there is a stronger guarantee about the 
loaded program, and the program need not receive all the rights of 
the node. Further, the resulting rights, like those of the node, can 
be exercised over the network. 

There is a natural role associated with many groups, for exam-
ple the role of administrator with the group of administrators. 
Hence we use group names as roles, and adopt the general rule that 
if A is a principal, G a group, and A ⇒ G then (A as G) ⇒ G. 

The procedures Delegate and Claim are used in tandem to im-
plement delegation; Figure 1 shows an example. Suppose process 
X has an Auth a that represents A, process Y has an Auth b that 
represents B, and X wants to give to Y an authority that represents 
B for A by delegation. First, X gets from Y a Prin pb that represents 
B. Then X calls Delegate(a, pb) to make a new Auth c that represents 
A but also carries the property that A says ((B | A) ⇒ (B for A)). 
Now X sends c to Y, which receives it as the Prin pc. Finally Y calls 
Claim(b, pc) to get an Auth d that represents B | A, and hence B for A 
by the delegation axiom. Before doing this, Y may wish to call 
Authenticate(pc) to find out what principal d will represent. 

A process can make an Auth a invalid by calling Discard. The 
effect is that once the receiver caches time out, the process can no 
longer use a to speak for a’s principal. If all is TRUE, a also becomes 

 
Figure 1: An example of delegation 
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invalid in all the processes that have inherited it; this allows a 
process to take an authority away from its children, for example. 

If a was the result of Delegate, invalidating it has another ef-
fect: any Auth derived from a by Claim will also become invalid 
within a fairly short time (at most 30 minutes). The same thing 
happens if the process that called Delegate terminates. 

The API provides no direct access to the logical operators | and 
∧ or to the handoff rule. 

4 The Authentication Agent 
The authentication agent handles most of the complexity of au-

thenticating requests from compound principals. It has four parts. 
The secure channel manager creates process-to-process secure 
channels. The authority manager associates Auths with processes 
and handles authentication requests. The credentials manager 
maintains credentials on behalf of local processes and validates 
certificates authored on other nodes. Finally, the certification li-
brary establishes a trusted mapping between principal names and 
cryptographic keys, and between groups and their members. Figure 
2 shows the structure of the authentication agent; arrows indicate 
call dependencies. 

 
Figure 2: Structure of the authentication agent 
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Only a few changes were needed to the rest of Taos to support 
the authentication agent: implementing authority inheritance in the 
process manager; supporting secure loading; and adding Auth pa-
rameters to all security-sensitive kernel calls. 

4.1 The secure channel manager 
The secure channel manager implements the Chan datatype de-

scribed in Section 3.1. It does not implement secure channels itself. 
Instead, it controls the construction of node-to-node channels, and 
then uses them to provide process-level channels to its clients. 
Since the purpose of authentication is to prove that a channel utters 
a request on behalf of a principal, the secure channel manager must 
be able to attribute channels to processes and thereby link channels 
to the principals for which they speak. Our design does not man-
date any one technique for implementing secure channels; such 
techniques are well documented [13]. 

4.1.1 Node-to-node channels 
Given two nodes A and B, it is easy to establish a shared-key 

channel C between them. We use the following protocol, which is 
described in more detail in Lampson et al. [1992, Section 4]. In 
brief, A invents a random number Ja and sends it to B encrypted 
under the public part of B’s key Kb. Similarly, B sends Jb encrypted 
under A’s key Ka. Note that this is encryption for secrecy rather 
than integrity. Now, both A and B can compute a shared key by 
combining Ja and Jb via a hash function. A shared key established 
in this fashion can be used to form a secure channel C, which 
speaks for Kb from A’s viewpoint and for Ka from B’s viewpoint. 

The secure channel manager maintains a cache of keys shared 
with other nodes, indexed by node address and used to implement 
GetChan and Send. Another cache contains a mapping from shared 
keys to node keys, and is used by Receive to get from the shared 
key that successfully decrypts a message to a node key. Both of 
these caches can be flushed as necessary. In fact, both are flushed 
periodically in order to invalidate old keys. The key-to-node-key 
mapping is flushed half as often as the address-to-key mapping so 
as to prevent misses caused by partners using older keys. 

Each node is responsible for caching and timing out the keys it 
shares with other nodes, and either end of a secure channel can 
trigger the generation of a new shared key. When B re-executes the 
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key-establishment protocol, the resulting channel from A still 
speaks for Ka. Hence, rekeying does not invalidate authentication 
state based on node keys. 

Taos does not implement hardware secure channels. The key 
exchange mechanism it implements is, however, suitable for con-
structing them. Herbison [1990] discusses the use of encrypting 
network controllers to build efficient secure channels. Our system 
design is intended to operate best with encryption-capable control-
lers. DES [National Bureau of Standards 1977] hardware for such 
controllers has been shown to operate at speeds of 1 Gbit/sec 
[Eberle and Thacker 1992], so performance should not be a prob-
lem. 

In our implementation, software DES is used to sign channel 
certificates (see Section 4.3.4), but requests are made without sig-
nature to avoid the overhead of software encryption. 

4.1.2 Process-to-process channels 
The channels offered to clients of the API are always between 

two processes. These channels are formed by multiplexing proc-
ess-level data across the node-to-node channels discussed in the 
previous section. The concrete form of the Chan datatype differs 
depending on the secure channel implementation. However, all 
channel implementations must support naming of channels by 
ChanIDs: 

TYPE ChanID = { nk:KeyDigest; pr:INTEGER; addr:Address }; 
The nk field of ChanID names the node key of the partner, pr 

identifies the partner process, and addr indicates the address of the 
partner authentication agent. A message digest function is applied 
to node keys in order to produce small values for the nk field. We 
use the MD4 message digest function [Rivest 1991]. 

In Taos we exploit the fact that most communication employs a 
transport protocol under our control. We identify each process with 
a 32-bit process tag (PTag)3 and mark all transmissions with the 
PTag of the sending process. 

The secure channel manager exports the primitives: 
PROCEDURE GetChanID(ch:Chan): ChanID;  
PROCEDURE PTagFromChan(c:ChanID): PTag; 
The receiver of a message can call GetChanID to obtain a 

ChanID given an abstract Chan. At the source of channel c—where 

                                                 
3 Process tags are never reused; this limits Taos to 232 processes per boot. 
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c.nk is the digest of the local node key—PTagFromChan(c) can be 
called to derive the PTag for the process that controls c. In Taos, 
we put a PTag in the pr field and hence can implement GetChanID 
by concatenating the sender’s node key, PTag, and node address. 
The implementation of PTagFromChan just returns c.pr. Process-
level multiplexing can also be done with standard protocol imple-
mentations such as TCP/IP and UDP/IP that use small integer port 
numbers to identify the origin and destination of messages within a 
node. Port numbers would be perfect process identifiers (that is, 
values of the pr field) if they were not reusable. One possible 
workaround is to place restrictions on the reuse of port numbers. 
Another is to treat process channels as secure connections that 
must be explicitly opened and closed; this requires considerable 
care. 

4.2 The authority manager 
The authority manager implements the operations on Auths and 

Prins discussed in Sections 3.2 and 3.3. The internal interface to the 
authority manager parallels the API quite closely. However, for 
each Auth supplied as an argument, the kernel call dispatcher ap-
pends the PTag of the caller. This PTag argument is used to ascer-
tain that the caller owns each supplied Auth. We say that a process 
owns an Auth if the authority manager has given that process the 
right to use it. Whenever an Auth is explicitly returned to a process 
through the API, the calling process owns it. 

Each new Auth is assigned a unique AID by the authority man-
ager. In our implementation AIDs are 96 bits wide, so there is no 
need to reuse one. The authority manager maintains a table with 
credentials for the Auths it creates, indexed by AID. Each entry con-
tains: 

• credentials for the corresponding Auth, 
• a list of PTags of processes that own this Auth, 
• credentials for unclaimed delegations (only if this Auth re-

sulted from a call to Delegate), and 
• a source from which to refresh delegation credentials (only if 

this Auth resulted from a call to Claim). 
The precise structure of credentials is irrelevant to the authority 

manager. For now, we think of them as bundles of certificates, 
which for example prove that a channel speaks for a principal or 
that a principal is another’s delegate. 
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Much like Unix file descriptors, Auths can be passed by inheri-
tance to child processes. The authority manager provides two 
primitives that the process manager can use to implement this in-
heritance: 

PROCEDURE Handoff(a:Auth; ptag:PTag);  
PROCEDURE PurgePTagCptag: PTag); 
Handoff adds ptag to the list of PTags of processes that own a. It 

is called when an Auth is inherited from a parent process. 
PurgePTag eliminates all instances of ptag in the credentials table. 
It is called when the process identified by ptag terminates. 

4.2.1 Callbacks 
As we have seen, AIDs and channels are used to represent prin-

cipals in network protocols. For this to work, the authority man-
ager must be prepared to produce credentials on behalf of any Auth 
it manages. These credentials are obtained with callbacks to save 
the cost of passing complex credentials repeatedly. In fact, creden-
tials are generated lazily, only when needed, and AIDs may be 
passed before the corresponding credentials exist. Although cre-
dentials could easily be bundled with requests, they are large 
enough (> 1 kbyte) to affect communications performance. Since 
the results of authentication are cached extensively, callbacks im-
prove performance for nearly all applications, even in high-latency 
networks. 

Suppose a user-level process receives a request on a channel 
ch. In this case, the API function GetPrin returns a Prin p con-
structed from GetChanlD(ch) and the AID accompanying the request. 
Now the process can ask its authentication agent to resolve p into a 
principal name, for example with a call to Authenticate(p). We use 
the PrinID datatype to represent Prins that are passed across address-
space boundaries (for instance between user space and the authen-
tication agent): 

TYPE PrinID = { ch:ChanID; aid:AID }; 
The implementation of Authenticate(p) asks the requester’s 

agent (at p.ch.addr) to provide credentials for p. This agent looks up 
p.aid in its credentials table and determines whether 
PTagFromChan(p.ch) specifies a process that owns the correspond-
ing Auth. If it does, the requester’s agent returns a channel certifi-
cate as proof that the channel speaks for the principal that p repre-
sents. This proof consists of the credentials found in p.aid’s creden-
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tials-table entry and a statement that p.ch quoting p.aid speaks for 
the principal (see Section 4.3.1). 

It is critical for performance that the results of Authenticate be 
cached. Caching can be implemented in user space, in the operat-
ing system, or both. Our implementation caches the results of au-
thentication callbacks in user space, with a timeout equal to the 
validity interval of the supplied channel certificate up to a maxi-
mum of 30 minutes. 

A callback also occurs when a call Claim(me, p) activates a 
delegation. The delegate’s authentication agent passes p in a call-
back to the delegator’s agent, which uses p.aid to find credentials 
suitable for signing a delegation certificate and returns a signed 
certificate to the delegate’s agent. That agent must remember p so 
that it can repeat the callback to refresh the delegation in case it 
expires. The delegation certificate need not be concealed. Any 
agent may request a copy, since it is useful only to the delegate’s 
agent. 

4.3 The credentials manager 
The credentials manager is the heart of the Taos authentication 

system. Its primary functions are to build, check, and store creden-
tials. We explain the form of credentials and their logical meaning 
in the first two subsections. Then we give the interface to the cre-
dentials manager and discuss techniques for avoiding signatures. 

4.3.1 Credentials 
We understand credentials as having logical meanings. A cre-

dential is evidence that one principal Q speaks for another princi-
pal P. If the credential were written as a formula M, its recipient 
would want to check that M implies Q ⇒ P. 

Taos encodes credentials as S-expressions. The encoding is de-
signed to make straightforward the proof of the theorem that M 
implies Q ⇒ P. If an S-expression is a well-formed credential, 
then there is a simple procedure for extracting P and Q from it that 
ensures that M implies Q ⇒ P. If in addition all signatures in the 
S-expression are recent and correct, then the S-expression is said to 
be valid; the S-expression is interpreted as M only if it is valid. 
Thus, deriving Q ⇒ P is reduced to parsing a credential and check-
ing signatures. 
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In this section we define our S-expression grammar for creden-
tials. In Section 4.3.2 we give a table of correspondences between 
S-expressions and logical formulas, effectively recovering the 
logical form of a credential from the S-expression encoding. This 
logical form is used only in explaining our implementation; the 
implementation does not manipulate formulas. We also describe 
how to check whether a credential is valid. 

Table 1 gives the grammar for credentials. Names, keys, 
PrinDs, and signatures are terminals. The main production is the 
one for channel, because requests always arrive on channels. The 
name components of primary credentials are only hints, used to 
simplify the mapping of keys into names. We say that a credential 
y is embedded in a credential x if y is a subexpression of x. 

A certificate is an instance of one of the first group of rules in 
the credentials grammar. The signature in a certificate includes the 
interval of time for which it is valid plus an unforgeable value 
identifying the signer. This value is a MD4 digest of the certificate, 
encrypted by a RSA secret key [Rivest et al. 1978]. The digest is 
computed over the entire certificate, excluding embedded signa-
tures, by a one-way function that reduces its input to a size small 
enough to sign conveniently; the function is one-way in the sense 
that it is computationally hard to find a different input with the 
same digest. 

channel = ( ‘channel’ prin prinID signature ) 
boot = ‘boot’ k_as key signature ) 
login = (‘login’ k_as session signature ) 
session = (‘session’ key boot signature ) 
delegation = (‘for’ delegator delegate signature ) 
 
p_as = ( ‘as’ prin role ) | primary 
k_as = ( ‘as’ k_as role ) 
primary = ( key name ) 
 
prin = boot | login | delegation | p_as 
delegator = prin 
delegate = prin 
role = name 
 

Table 1: Grammar for credentials 
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We now discuss specific credentials in some detail. For each 
type of signed credential we discuss an example, borrowing con-
text from Section 2.2. 

Boot certificates. A boot certificate describes a handoff from a 
machine key to a node key. In our example, the meaning M of the 
boot certificate is: 

(Kvax4 as OS) says (Kws ⇒ (Kvax4 as OS)) (8) 
From M and the handoff axiom, we obtain: 

Kws ⇒ (Kvax4 as OS) 
which is the formula Q ⇒ P in this case. The boot certificate is 
encoded as:  

(boot (as (Kvax4 Vax4) OS) Kws sig1) 
Login and session certificates. A login certificate is a special 

form of delegation certificate. It denotes a delegation from a user’s 
key to the conjunction of a node key with a temporary session key. 
The user’s key should be in memory for the shortest possible time, 
to reduce the chance that the key will be discovered by an attacker. 
In Taos, it is present just long enough to sign the login certificate. 
This certificate is of long duration, on the order of days. More so-
phisticated login protocols that take advantage of smart-cards can 
produce equivalent login certificates [Abadi et al. 1993a]. 

The node key and the session key are combined in a session 
certificate, which represents a handoff from the session key to the 
node key. A session certificate has a short timeout and is refreshed 
as needed until the end of the session. When the session ends, the 
session key is discarded so that the session certificate can no 
longer be refreshed. Because the login certificate delegates to the 
node key and to the session key, the certificate becomes unusable 
at the end of the session; the inclusion of the session key compen-
sates for the long timeout of the login certificate. 

In our example, Bob, with key Kbob, logs in to WS. We still 
have the boot certificate (8). Let Ks be the session key; the session 
certificate adds: 

Ks says ((Kvax4 as OS) ⇒ Ks) (9) 
and the login certificate adds: 

Kbob says ((P1 | Kbob) ⇒ (P1 for Kbob)) (10) 
where P1 is ((Kvax4 as OS) ∧ Ks). From the conjunction of formulas 
(8), (9), and (10), we can derive: 

(Kws | Kbob) ⇒ (P1 for Kbob) 
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In the notation introduced above, the conjunction is M, and the 
principals (Kws | Kbob) and (P1 for Kbob) are Q and P, respectively. 

In our encoding the session certificate is embedded inside the 
login certificate, and the boot certificate inside the session certifi-
cate: 

(login 
   (Kbob Bob) 
   (session Ks (boot (as (Kvax4 Vax4) OS) Kws sig1) sig2)  
   sig3) 

The embedded certificates identify the machine, the node, and the 
session key, and give credentials for them. 

General delegation certificates. The general form of delega-
tion involves transfer of rights between principals. Continuing the 
example, suppose that Bob on WS delegates to a node (Vax5 as 
OS). The formula that corresponds to this delegation is: 

(Kws | Kbob) says ((P3 P2) ⇒ (P3 for P2)) 
where P2 is (P1 for Kbob) and P3 is (Kvax5 as OS). Conjoining this 
formula with those for Bob’s login (8), (9), and (10), and with the 
boot certificate for (Vax5 as OS): 

(Kvax5 as OS) says (Kws' ⇒ (Kvax5 as OS)) 
we can prove: 

(Kws' | Kws | Kbob) ⇒ (P3 for P2) 
In our encoding the entire delegation certificate is: 
(for 
  (login... sig3) 
  (boot (as (Kvax5 Vax5) OS) Kws' sig4) 
  sig5) 

The login certificate given above is nested here in its entirety (ab-
breviated with an ellipsis) and used as the source of a delegation. 
The delegate is the boot certificate for Vax5 as OS. 

Channel certificates. Ultimately, channels are the only princi-
pals that make requests directly. A request on a channel is attrib-
uted to a principal that has handed off some of its rights to the 
channel. A channel certificate represents this handoff. In our sys-
tem, each certificate authenticates a channel multiplexed on a 
node-to-node key. More precisely, the channel is a node-to-node 
channel quoting a process quoting an AID. Its encoding is a textual 
representation of the PrinID datatype from Section 4.2. 

In our example, a channel certificate for a channel Cbob from 
Bob means: 
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(Kws | Kbob) says (Cbob ⇒ P2) 
Conjoining this formula with those for Bob’s login (8), (9), and 
(10), we can now prove: 

Cbob ⇒ P2 
When Cbob is the channel key47 | ptag13 | aid42, this certificate is 
encoded as: 

(channel 
   (login... sig3)  
   key47 ptag13 aid42  
   sig4) 
Because channels are typically short-lived, a channel certificate 

normally has a short validity interval. 

4.3.2 The meanings of credentials 
As the previous examples suggest, each valid credential x in 

the grammar has a logical meaning M(x). Now we define M in 
general. Since M is a function, the mapping from S-expressions to 
formulas is clearly unambiguous. We define validity later in this 
section. 

It is convenient to use several auxiliary functions. A function I 
gives us the immediate meaning of a credential. Then M(x) is de-
fined to be I(x) conjoined with I(y) for every credential y embed-
ded in x. Thus, the interpretation of a credential is its immediate 
meaning, plus the meaning of any embedded credentials. In the 
cases of primary, p_as, and k_as credentials, which bear no sig-
nature, I(x) is simply true. In the other cases, I(x) is the assertion 
made by the top-level signature; it does not refer to other signa-
tures or their timestamps, and has the form 

S(x) says (T(x) ⇒ P(x)) 
where P(x) and T(x) are principals and S(x) is the speaker, the prin-
cipal that issues the credential. In particular, when S(x) is a key, it 
is the key that should be used in the credential’s signature. 

In each case, the purpose of a credential x is to establish that 
Q(x) speaks for P(x). More precisely, the formula M(x) should im-
ply Q(x) ⇒ P(x). For example, a boot certificate x of the form 

(boot (Kvax4 Vax4) Kws signature) 
means Kvax4 says (Kws ⇒ Kvax4); this formula is M(x). Let Q(x) be 
Kws and P(x) be Kvax4; by the handoff axiom, M(x) implies Q(x) ⇒ 
P(x). In general, we have: 
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THEOREM 1. For every credential x, it is provable that 
if M(x) then Q(x) ⇒ P(x) 
PROOF. We prove the theorem by induction on the structure of 

credentials. We use different strategies in the cases that correspond 
to credentials with top-level signatures and those that do not. 

When x is a credential with a top-level signature, in order to 
derive Q(x) ⇒ P(x) from M(x) it suffices to obtain both of the fol-
lowing: 

1. Q(x) ⇒ T(x), and 
2. if S(x) says (T(x) ⇒ P(x)) then T(x) ⇒ P(x). 

In all cases (1) will be a consequence of the meanings of embedded 
credentials. To obtain (2), we may use either 

• S(x) ⇒ P(x), and then the handoff axiom applies; or 
• P(x) is B for A and T(x) is B | A for some A and B such that 

S(x) ⇒ A, and then the delegation axiom applies. 
As we show in the Appendix, the definitions of Table 2 satisfy 

these properties. The cases of credentials without top-level signa-

x  S(x)  T(x)  P(x)  Q(x)  
boot Q(x.k_as)  x.key  P(x.k_as)  x.key  
session x.key  P(x.boot)  x.key  Q (x.boot)  
login  Q(x.k_as)    (P(  x.s.boot) 

      ∧ P(x.s)) 
 | P(a:.k_as)  

(P(  x.s.boot)  
    ∧ P(x.s))  
for P(x.k_as)  

  Q(x.s.boot)  
| Q(x.k_as)  

dele-
gation  Q(x.d’gator)   P(x.d’gate) 

| P(x.d’gator) 
P(x.d’gate)  
for P(x.d’gator) 

  Q(x.d’gate)  
| Q(x.d’gator) 

channel Q(x.prin)  x.prinID  P(x.prin)  x.prinID  
p_as      P(x.prin)  

as x.role  
Q(x.prin)  
as x.role  

k_as      P(x.k_as)  
as x.role  
or x.key  

Q(x.k_as)  
as x.role  
or x.key  

primary     x.key  x.key  

The immediate meaning I(x) of a credential x is S(x) says (T(x) ⇒ P(x)) when 
S(x) is defined, and true otherwise. The meaning M(x) of a credential x is the 
conjunction of I(x) with the immediate meanings of any credentials embedded 
in x. In all cases, M(x) implies Q(x) ⇒ P(x). We abbreviate session by s. 

Table 2: The logical meaning of credentials 
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tures are mostly straightforward; we treat them in the Appendix as 
well. □ 

A credential is valid if all the signatures it contains are well-
formed, timely, and performed with the proper key. The proper key 
K for signing a certificate x is defined from S(x), with a clause for 
each of the possible forms of S(x): 

• The proper key for a principal of the form A as R or A | A' is 
the proper key for A, since it is A that must apply the signature. 

• The proper key for a key is the key itself. 
In general, K is the key that the principal S(x) uses. If x is valid, 

then it has recently been signed with S(x)’s key K, so we can inter-
pret x as a formula I(x) of the form S(x) says (T(x) ⇒ P(x)). By 
convention, S(x) should use K to sign x only when S(x) supports 
T(x) ⇒ P(x). This is the justification for our logical reading of 
valid credentials. 

An obvious generalization of this definition of validity allows 
any key that speaks for K to sign the certificate. The generalization 
is used in Section 4.3.4 to allow channel certificates to be signed 
with DES keys. 

Theorem 1 guarantees that validating a credential x suffices to 
show that Q(x) ⇒ P(x): if x is valid, then it is interpreted as M(x) 
and the theorem applies. Corollary 2 makes this claim precise: 

COROLLARY 2. For every certificate y, assume that S(y) says 
(T(y) ⇒ P(y)) is true for the validity interval of y if the proper key 
signs y. Let x be a valid credential. Then Q(x) ⇒ P(x) is true. 

PROOF. If x is valid, then each certificate y embedded in x is 
valid: y is signed with the proper key and its validity interval in-
cludes the present. By our hypothesis, S(y) says (T(y) ⇒ P(y)) is 
true; that is, I(y) is true. If x itself bears a signature, then similarly 
S(x) says (T(x) ⇒ P(x)) is true. Therefore, M(x) is also true, as 
M(x) is the conjunction of I(x) with I(y) for each y embedded in x. 
By Theorem 1, Q(x) ⇒ P(x) is true. □ 

4.3.3 The Credentials interface 
The credentials manager exports the Credentials interface to the 

authority manager. This interface defines an abstract type CredT 
that represents credentials, as well as procedures for constructing 
CredTs and for signing and validating channel certificates. A CredT 
defines a principal P that can make requests, and contains an ex-
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pression in the credentials grammar sufficient to prove that some 
other principal can speak for P. 

The credentials manager holds a CredT representing the creden-
tials for the node. Although the Firefly lacks the firmware neces-
sary to generate a node key securely, Taos imitates secure booting 
by generating a boot certificate and node key at system-startup 
time. The node’s CredT contains this certificate and key. 

The operations on credentials are: 
TYPE Cred = TEXT; 
PROCEDURE New(name, password: TEXT): CredT;  
PROCEDURE AdoptRole(t:CredT; role:TEXT): CredT;  
PROCEDURE Sign(t:CredT; p:PrinID): Cred;  
PROCEDURE Validate(cr:Cred; p:PrinID): TEXT;  
PROCEDURE Extract(cr:Cred): Cred;  
PROCEDURE SignDel(t:CredT; cr:Cred): Cred;  
PROCEDURE ClaimDel(t:CredT; cr:Cred): CredT; 
Each value of the Cred datatype contains a textual representa-

tion of credentials according to the grammar of Table 1. 
New produces a CredT containing a login certificate and a ses-

sion key. The CredT returned by AdoptRole contains credentials for 
t as role. 

The authority manager uses Sign to produce channel certificates 
in response to authentication callbacks. Similarly, it uses Validate to 
check the results of authentication callbacks and return principal 
names. Extract strips off an outer-level channel certificate, and re-
turns the credentials of the principal for which the channel speaks. 

The delegator’s authority manager implements Delegate by 
finding and validating a channel certificate for the delegate. It then 
calls Extract to get the delegate’s credentials, and stores the result. 
The delegate’s authority manager implements Claim by asking the 
delegator’s agent for a delegation certificate (produced with 
SignDel) and using it to call ClaimDel. The result is a CredT repre-
senting delegate for delegator. 

4.3.4 Signature techniques 
We use three techniques to minimize the number of public key 

encryptions required to sign certificates: 
• As described in Section 4.1, we can establish a shared key K 

between two nodes A (with key Ka) and B so that B believes that K 
speaks for Ka. Therefore, A can sign certificates about channels to 
B by encrypting with K instead of Ka. Only B need believe these 
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certificates. DES encryption (under K) is much faster than RSA 
encryption (under Ka). 

• When one process delegates to another on the same node, it is 
possible to avoid one signature. The delegation certificate structure 
remains the same, but no cryptographic signature is needed. If an 
off-node delegation follows, the signature of the outer certificate 
implies validity for the inner one, because both use the same key. 

• When refreshing nested certificates, care must be taken not to 
invalidate higher-level signatures. It is sufficient to omit nested 
signatures from the certificate digests. For example, when a ses-
sion certificate is refreshed, its validity times are changed. An en-
closing login certificate can avoid refresh only if its digest omits 
the nested signature. This omission is safe since there is no men-
tion of nested signatures in the immediate meaning of credentials. 

4.4 The certification library 
If ACLs contained public keys instead of human-sensible 

names, network security would be considerably less complex. Un-
fortunately, keys are big numbers that are too unwieldy for human 
users to manipulate. Moreover, at the highest level, computer secu-
rity applies to names for people and resources. At some point there 
needs to be a trusted mapping from keys to the principal names 
they represent. Similarly, there need to be trusted mappings from 
group members to group names and from image digests to role 
names. 

The task of the certification library is to implement these map-
pings. We also use it to recover keys from stable storage given 
passwords short enough for people to remember. Our certification 
authority (or CA, see Section 2.2) is a simple program that man-
ages the database underlying these services. This CA is off-line in 
the sense that clients need not communicate with it in real time in 
order to trust its statements. A CA that could function without any 
network connections might be an interesting addition to our work. 
For example, we could use a portable computer to write certifi-
cates, keep the computer in a safe, and allow floppy disks as the 
only means of communication with the rest of the world. 

Bootstrapping trust. A practical system of any size must base 
trust on shared knowledge of a trusted CA. In Taos, this informa-
tion takes the form of a CA public key. Certificates signed with 
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this key are trusted. It is crucial to protect the corresponding secret 
key. 

A user learns his own secret key and the public key of his 
trusted CA by decrypting a user-specific string stored in the name 
server.4 This string contains the user’s private data encrypted under 
a DES secret derived from the user’s password. We keep analo-
gous strings for nodes. Storing user secrets in this way would not 
be necessary if users carried public key smart-cards [Abadi et al. 
1993a; Quisquater et al. 1991]. 

Name certificates. These describe a mapping from keys to 
names. They are signed by a CA trusted for this purpose, much like 
CCITT X.509 certificates [CCITT 1988]. The logical form of a 
certificate that maps Ku to U is: 

Kca says (Ku ⇒ U) 
A simple extension of the grammar described in the previous sec-
tion is used to express these statements. 

Since certificates are statements signed off-line, they can be be-
lieved even if retrieved from untrusted storage. In Taos, we use a 
replicated, highly available name service [Birrell et al. 1993] to 
store name certificates. Certificates are indexed by name in this 
store. The replication makes a denial-of-service attack more diffi-
cult. 

We may now continue the example of Section 4.3.1. Given 
valid name certificates that map Kbob to Bob and Kvax4 to Vax4, we 
obtain: 

Cbob ⇒ ((Vax4 as OS) for Bob) 
Therefore, when a request appears on the channel Cbob, it is at-

tributed to (Vax4 as OS) for Bob. 
Membership certificates. These state that a principal U speaks 

for (is a member of) a group G: 
Kca says (U ⇒ G) 
They are used in Taos ACL checking, and also in role process-

ing and secure loading. 
Image certificates. These are used in secure loading to verify 

the executable image of a recently loaded program and to name the 
role under which that program should run. The purpose of an im-

                                                 
4 We could easily extend our system to incorporate a hierarchy of CAs. For a 
system that implements a CA hierarchy, some indication of the local CA’s loca-
tion in the hierarchy would be required at well [Lampson et al. 1992, section 5]. 
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age certificate is to establish that a given image digest I speaks for 
a role name R: 

I ⇒ R 
(Think of R as the name of a program like emacs, or of a class of 
programs like games.) It would be sufficient for the CA to produce 
an image certificate: 

Kca says (I ⇒ R) 
Instead, the CA permits a user U to write an image certificate for 
R. The CA issues: 

Kca says ((U | R-owner) ⇒ R) 
where R-owner is a special name associated with R (e.g., emacs-
owner with emacs). If Ku is U’s key, we obtain: 

(Ku | R-owner) ⇒ R 
This means that U can release a new version of R with digest I by 
signing an image certificate: 

Ku says R-owner says (I ⇒ R) 
and then I ⇒ R follows. 

Image digests can be computed using any secure one-way 
function. Taos stores image certificates as a file property on certain 
executable files. 

4.4.1 The CertLib interface 
The certification library exports the procedures: 
PROCEDURE CheckKey(name:TEXT; k:Key): BOOL;  
PROCEDURE IsMember(name, group: TEXT): BOOL;  
PROCEDURE CheckImage(d:Digest; prog, cert: TEXT); 
The credentials manager calls CheckKey to find and validate a 

name certificate that states that k speaks for name. The IsMember 
procedure ascertains whether name is a member of group. 
Checklmage supports secure loading. It checks that the certificate 
cert states that the image digest d speaks for the program prog, and 
that cert is signed by a principal with control of images for prog. 

4.5 Simplifying compound names 
An authentication result in Taos is more often than not a com-

pound principal. The principals that result from credential valida-
tions have the form: 

principal =   name  
 | (principal for principal)  
 | (principal as role)  



 
28/35

where name and role are strings. Existing applications often deal 
only with simple names. The following function reduces a princi-
pal to a simple name: 

• If the principal has a simple name, return it. 
• If the principal is B for A, apply this function recursively to 

A. (Checks can easily be added to guarantee that B is trustworthy.) 
• If the principal is A as R, then apply this function recursively 

to A. Take the resulting simple name, and find a membership cer-
tificate stating that it speaks for R. If successful, then return R, oth-
erwise fail. 

For example, WS for Bob reduces to Bob, and WS for (Bob as 
Admin) reduces to Admin if Bob ⇒ Admin (that is, if Bob is a 
member of Admin). 

5 Experience 
The authentication system described in this paper was in daily 

use for a year by a community of nearly 80 researchers and admin-
istrative personnel. In this section we discuss our experience, and 
in particular the performance of our system. 

5.1 Authentication for the Echo file system 
The most commonly used authenticated application was Echo 

[Birrell et al. 1993], a distributed file system used extensively 
within Taos. The Echo environment exercised all the Taos security 
features described in this paper except general delegation. 

In addition to authenticating normal file system operations, 
Echo allowed the use of roles to control access to protected parts of 
the file system namespace. Users typically logged onto the system 
with the role “normal user”, which indicated that they had no spe-
cial privileges. Administrators had the option of taking on other 
roles when they wanted to access sensitive files. Using these roles 
for system administration is more precise and less dangerous than 
using a special super-user account with unqualified privileges (like 
root under Unix). 

It is often useful for a user to run programs with some of the 
rights of a node. For example, a program might need control over 
all the node’s processes, or over the node’s configuration files and 
working space. We used secure loading to allow normal users to 
run certain programs with enhanced rights. 
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5.2 Gateways 
We built a gateway that allows ordinary NFS clients to access 

the Echo file system. It uses standard methods to determine the 
principal p making an NFS request and then forwards the request 
to Echo. If the gateway runs as the principal G, then it can utter 
forwarded requests as G | p. We could have allowed the principal 
G | p in Echo ACLs. Instead, for each p we invent a name q, issue a 
certificate Kca says ((G | p) ⇒ q), and then use q on ACLs for au-
thorizing forwarded requests from p. In some systems q is called a 
proxy. 

This approach can be applied to accept messages authenticated 
by any other protocol. The tricky part is finding a place to put the 
gateway where it can intercept and translate the authentication pro-
tocol, which is often application-specific. 

To go in the other direction and translate one of our authenti-
cated messages p says m into another protocol, say Kerberos, the 
gateway would have to be able to authenticate itself as p in Kerbe-
ros. To achieve this, it would need either to have the user’s pass-
word for long enough to obtain a Kerberos ticket-granting ticket, 
or to act itself as a Kerberos authentication server. We have not 
tried to implement this. 

5.3 Performance 
The performance of our system depends on the costs of the 

cryptographic operations: 

Our RSA implementation [Shand and Vuillemin 1993] is care-
fully coded in C and assembler. We use a 512-bit modulus and a 
public key exponent of 3. The Firefly has 4 CVax processors, each 
running at about 2.5 MIPS. Our multiprocessor implementation of 
RSA signatures gains nearly a factor of two in speed. With only a 
single processor, it takes 472 ms to compute a RSA signature; this 
compares with 68 ms on a DECstation 5000, which runs at 20 
MIPS. We use public-domain implementations of MD4 and DES 
(in C); much faster ones are possible [Lampson et al. 1992, Section 
4]. 

RSA sign  RSA verify  DES  MD4  
248 ms  16 ms  15 ms  6 ms/kbyte  
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Efficient RSA key generation is also important to our imple-
mentation. Using three separate threads running a randomized 
prime generation algorithm [Knuth 1981, p. 388], we can produce 
a new RSA key in 10-15 seconds.5 Only two primes are needed for 
generating a key, but there is a large variance in the time required 
for generating a prime. Using three threads significantly reduces 
the average time required for generating two primes. 

In Table 3 we show the results of measuring three basic au-
thentication operations. The numbers assume an existing node-to-
node secure channel and a loaded name certificate cache. We show 
how time is divided between cryptographic functions and other 
parts of the system. We estimate that RFC with non-trivial argu-
ments takes on the order of 5 ms [Schroeder and Burrows 1990]. 
The line labeled “S-expr” indicates the cost of parsing and writing 
S-expressions. This cost is about one-third of the total, but it could 
easily be reduced. 

The first column of the table (Auth-login) shows the time re-
quired for the first authenticated RFC—subsequent calls to the 
same server using the same credentials will get cache hits. The 
caller’s credentials are those for a simple login session. This test 
includes a callback to the caller’s agent and a subsequent channel-
certificate validation. We expect this cost to be incurred infre-
quently: for example, when the user’s machine first contacts a file 
server, and whenever the credentials need refreshing thereafter 
(every 30 minutes). 

                                                 
5 Even so, Taos precomputes session keys in background. 

 Auth Delegate Auth 
 login  delegation 

RSA sign  — 1 × 248 ms — 
RSA verify  3 × 16 ms 10 × 16 ms 7 × 16 ms 
DES  2 × 15 ms 2 × 15 ms 2 × 15 ms 
MD4  6 ms 18 ms 12 ms 
S-expr  46 ms 165 ms 91 ms 
RFC  2 × 5 ms 3 × 5 ms 2 × 5 ms 
Total  140 ms 636 ms 255 ms 
Measured  143 ms 671 ms 276 ms 

Table 3: Authentication test timings 
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The second test (Delegate) measures the time taken for a 
logged-in user to delegate to a logged-in user on another node. 
Delegation requires a hidden authentication, and hence three RPCs 
rather than two. 

The final test (Auth-delegation) is similar to the first (Auth-
login), except that the caller’s credentials involve an additional 
delegation. Once again, the costs shown are incurred only on the 
first use of the credentials and each time the cache is refreshed. 

There are two important facts to be gleaned from Table 3. First, 
the cost of using credentials to make requests is considerably less 
than that of delegation. This is good, since delegations occur much 
less frequently than requests. Second, almost all of the component 
costs of authentication are compute-intensive. Moving to a faster 
processor should improve the actual performance linearly. The 
Auth-login test should take less than 25 ms on a DECstation 5000. 

Even with faster processors, it is clear that caching at several 
levels is essential to system performance: 

• The cache used to implement Authenticate prevents repeated 
authentication callbacks. It has a timeout of roughly 30 minutes, so 
there are at most two authentication callbacks to an Echo client in a 
30-minute interval, regardless of the number of file system opera-
tions performed. 

• The shared key cache in the secure channel manager prevents 
unnecessary key exchanges. The keys stored there expire with a 
much longer period (6 hours). 

• The certification library maintains a cache that saves the re-
sults of name certificate validations. There a cached result can re-
main valid until the certificate expires, although we flush results 
more frequently to speed up revocation. 

Further caching is clearly possible. For example, the meanings 
of common embedded credentials (such as boot certificates) might 
be cached. 

5.4 Scale 
Although our implementation was not used on a large scale, the 

technique of off-line certification with minimal reliance on on-line 
services is well suited to large naming hierarchies [Lampson et al. 
1992, Section 5.2]. The performance of our basic security primi-
tives is dependent on system scale only in the cost of fetching 
static certificates such as those for names and group memberships. 
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In our implementation, this cost is only a small fraction of the total 
overhead. While this cost might grow with the number and geo-
graphic distribution of certified users, it can be offset by caching, 
hierarchical certification, and database replication. 

Our design can accommodate fast revocation of name certifi-
cates along the lines discussed elsewhere [Abadi et al. 1993b; 
Lampson et al. 1992], but we have not implemented this feature. 
There is an inherent tradeoff between timely revocation and the 
effectiveness of caching. This tradeoff becomes more significant as 
the scale of the system increases. 

6 Conclusion 
We have described a framework for security in distributed sys-

tems that is based on logic. The logic takes shape in an operating 
system that was in daily use by a substantial community. Our sys-
tem employs compound credentials to express the complex rela-
tionships between users, machines, and programs, yet little of this 
complexity shows through to users and programmers. Moreover, 
the careful optimizations that surround our use of public key cryp-
tography ensure that it does not hurt performance. 

We have explained our system in logical terms, and in particu-
lar obtained a theorem that relates concrete credentials and their 
logical meanings. It would be interesting to obtain further theorems 
to prove the correctness of our implementation. Even stating the 
proper results remains a challenge. 

The need for well-founded and expressive distributed security 
systems will grow with the speed of processors and networks, the 
number of interconnected entities, and the complexity of applica-
tions. Our work shows how to design practical systems that meet 
this need and demonstrates that such systems can be built and can 
perform well. 
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Appendix 
In this appendix we complete the proof of Theorem 1. 
First we treat the cases of credentials with top-level signatures, 

following the strategy described in Section 4.3.2. 
• boot: 

(1) Q(x) ⇒ T(x), since in this case both Q(x) and T(x) equal 
x.key. 

(2) S(x) ⇒ P(x), since S(x) is Q(x.k_as) and P(x) is P(x.k_as), 
and Q(x.k_as) and P(x.k_as) are always equal. 

• session: 
(1) Since x.boot is embedded in x, the induction hypothesis 

guarantees that M(x.boot) implies Q(x.boot) ⇒ P(x.boot), 
that is, Q(x) ⇒ T(x). Further, M(x) implies M(x.boot) and 
hence Q(x) ⇒ T(x). 

(2) S(x) ⇒ P(x), since both S(x) and P(x) equal x.key. 
• login: 

(1) Since x.s.boot is embedded in x, the induction hypothesis 
guarantees that M(x.s.boot) implies Q(x.s.boot) ⇒ 
P(x.s.boot). Similarly, M(x.s) implies Q(x.s) ⇒ P(x.s). By 
definition Q(x.s) equals Q(x.s.boot), so M(x.s) implies 
Q(x.s.boot) ⇒ P(x.s). Therefore, the conjunction of 
M(x.s.boot) and M(x.s) implies Q(x.s.boot) ⇒ 
(P(x.s.boot) ∧ P(x.s)). Since Q(x.k_as) and P(x.k_as) are 
equal and | is monotonic, this conjunction also implies 
(Q(x.s.boot) Q(x.k_as)) ⇒ ((P(x.s.boot) ∧ P(x.s)) | 
P(x.k_as)), that is, Q(x) ⇒ T(x). Finally, M(x) implies both 
M(x.s.boot) and M(x.s), and hence Q(x) ⇒ T(x). 

(2) P(x) is of the form B for P(x.k_as) and T(x) of the form B 
P(x.k_as). Moreover, S(x) is Q(x.k_as), which equals 
P(x.k_as). 

• delegation: 
(1) Since x.delegate and x.delegator are both embedded in 

x, the induction hypothesis guarantees that M(x.delegate) 
implies Q(x.delegate) ⇒ P(x.delegate). Similarly, 
M(x.delegator) implies Q(x.delegator) ⇒ 
P(s.delegator). Since | is monotonic, the conjunction of 
M(x.delegate) and M(x.delegator) implies 
(Q(x.delegate) | Q(x.delegator)) ⇒ (P(x.delegate) | 
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P(x.delegator)) that is, Q(x) ⇒ T(x). Finally, M(x) implies 
both M(x.delegate) and M(x.delegator), and hence Q(x) 
⇒ T(x). 

(2) P(x) is of the form B for P(x.delegator) and T(x) of the 
form B | P(x.delegator). Moreover, S(x) is Q(x.delega-
tor) and we have proved Q(x.delegator) ⇒ P(x.delega-
tor) using the induction hypothesis. 

• channel: 
(1) Q(x) ⇒ T(x), since in this case both Q(x) and T(x) equal 

x.prinID. 
(2) Since x.prin is embedded in x, the induction hypothesis 

guarantees that M(x.prin) implies Q(x.prin) ⇒ P(x.prin), 
that is, S(x) ⇒ P(x). Further, M(x) implies M(x.prin) and 
hence S(x) ⇒ P(x). 

The remaining cases correspond to credentials with no top-
level signature. They are simpler: 
• p_as: Since x.prin is embedded in x, the induction hypothesis 

guarantees that M(x.prin) implies Q(x.prin) ⇒ P(x.prin). 
Therefore, by the monotonicity of as, M(x.prin) implies 
(Q(x.prin) as x.role) ⇒ (P(x.prin) as x.role), that is, Q(x) 
⇒ P(x). Finally, M(x) implies M(x.prin) and hence Q(x) ⇒ 
P(x). 

• k_as: There are two cases depending on whether x is simply a 
primary or contains a role. In the former case, Q(x) ⇒ P(x), 
since both Q(x) and P(x) equal x.key. In the latter case, x.k_as 
is embedded in x, and hence the induction hypothesis guaran-
tees that M(x.k_as) implies Q(x.k_as) ⇒ P(x.k_as). Therefore, 
by the monotonicity of as, M(x.k_as) implies (Q(x.prin) as 
x.role) ⇒ (P(x.prin) as x.role), that is, Q(x) ⇒ P(x). Finally, 
M(x) implies M(x.k_as) and hence Q(x) ⇒ P(x). 

• primary: Q(x) ⇒ P(x), since in this case both Q(x) and P(x) 
equal x.key. 
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