

1/35

Authentication in the Taos Operating
System

Edward Wobber, Martin Abadi, Mike Burrows, and Butler
Lampson

This paper appeared in ACM Transactions on Computer Systems, 12,1, Feb-

ruary 1994. An earlier version appeared in the Proceedings of the 14th ACM
Symposium on Operating System Principles, December 1993.

This version was reconstructed from the printed version by OCR and hand
editing.

Authors’ Abstract
We describe a design for security in a distributed system and

its implementation. In our design, applications gain access to secu-
rity services through a narrow interface. This interface provides a
notion of identity that includes simple principals, groups, roles, and
delegations. A new operating system component manages princi-
pals, credentials, and secure channels. It checks credentials accord-
ing to the formal rules of a logic of authentication. Our implemen-
tation is efficient enough to support a substantial user community.

1 Introduction
We describe a design for security in a distributed system and a

particular implementation of this design. We present both the ex-
ternal interface and the major internal interfaces of our implemen-
tation. A formal logic [Abadi et al. 1993b; Lampson et al. 1992]
guided our design. We explain the correspondence between im-
plementation and logic, in particular how an authentication creden-
tial represents a formula and how an authentication is a proof. We
discuss our experience and some performance results; the imple-
mentation is efficient enough to support a substantial user commu-
nity.

For our purposes, a distributed system is a collection of nodes
connected by an insecure network; each node is a computer run-
ning an operating system that is trusted for local security. The set-
ting for our implementation is a distributed system where each

2/35

node is a Firefly shared-memory multiprocessor running the Taos
operating system [Thacker et al. 1988]. Taos is completely multi-
threaded, yet also implements a protected address-space model
close enough to that of Unix that it can run most Unix binaries.
Remote procedure call is the primary means of interprocess com-
munication. Although Taos has been a convenient test vehicle, our
only real dependence on it was that we could adapt it to our needs.

We use the access control model of security [Lampson 1974]
extended with compound principals [Gasser et al. 1989]. In this
model there are objects (files, printers, etc.), requests, and princi-
pals (users, machines, etc.) that utter requests. Each object has a
guard or reference monitor that examines each request and decides
whether or not to grant it. The request must first be authenticated
to identify the principal that uttered it, and then authorized only if
the principal has the right to perform the requested operation on
the object. The pieces of evidence that identify the uttering princi-
pal are called credentials. Compound principals provide a precise
and uniform representation for the sources of requests in a distrib-
uted system, including users, machines, channels, programs, dele-
gations, roles, and groups.

In each node, a new operating system component called the au-
thentication agent manages compound principals and their creden-
tials. Applications access security services through a narrow inter-
face to the local agent. The agent implements all credential ex-
changes and validations, communicating with agents in other
nodes when necessary and checking credentials according to the
formal rules of the logic. The agent uses a distributed certification
database for names, group memberships, and executable images.
From the underlying operating system it needs only a bidirectional
secure channel to each application, and global names for the chan-
nels between the application and the outside world.

Many systems that offer distributed security do so entirely at
the level of the application, either to avoid changing the kernel or
because most operating systems do not support a coherent model
of user identity throughout the network. Our basic design can be
implemented in the same way, with the authentication agent linked
into each application as a library.

In fact, however, our distributed security is part of the operat-
ing system. This has one major advantage: the notion of identity or
principal is built in at a very low level and is represented consis-

3/35

tently everywhere. There is no distinction between local and re-
mote principals. Minor advantages are that it is easy to provide the
necessary secure channels between the authentication agent and
applications, and easy for a child process to inherit the authority of
its parent. The trusted computing base does not get any bigger, be-
cause the operating system must be trusted anyway.

The next section reviews the logic. Section 3 presents the ap-
plication programming interface (API) to Taos security. Section 4,
the heart of the paper, describes the implementation in detail. Fi-
nally, Section 5 discusses our experience with the system in prac-
tice.

We do not address either denial of service or the kind of non-
disclosure security policies that are based on an information flow
model. We touch only briefly on the problems of compatibility
with other security mechanisms, such as Kerberos [Steiner et al.
1988] and OSF DCE Security [Open Software Foundation 1992].

2 Background
In this section we explain our treatment of encryption and time,

sketch the rules of our authentication logic, and give an extended
example of its use. Other papers treat these matters in detail [Abadi
et al. 1993b; Lampson et al. 1992].

We use shared key encryption to secure short-term node-to-
node channels. All other encryption is public key [Rivest et al.
1978] and is done only for integrity, not for secrecy. We write K
and K-1 for the public and secret keys of a key pair. We say that a
message encrypted with K-1 is signed by K so that we need to men-
tion only the public key.

Our authentication system relies on signed statements called
certificates. These form the building blocks of credentials, which
are proofs of authenticity. We view certificates and credentials
both as logical formulas and, in the implementation, as data.

Time does not appear explicitly in the logic; formally, assump-
tions and proofs concern only a given, implicit instant. In our sys-
tem, on the other hand, a time interval qualifies each certificate. A
certificate is valid only for the specified interval. Therefore, the
conclusion of a proof is valid only for the intersection of the inter-
vals of all the certificates used in the proof. Since these certificates
typically originate at different nodes, it is important that nodes
have loosely synchronized clocks. For synchronization we do not

4/35

have a secure time server, but instead rely on the clocks of individ-
ual nodes.

However, we can easily tolerate a one-minute skew because
certificates are valid for at least a few minutes. The most obvious
effect of a large skew is that authentication becomes impossible
because the validity interval of a formula is empty or does not in-
clude the current time. If a certificate originates at a node whose
clock is much later than real time, or is used at a node whose clock
is much earlier, it is also possible that the certificate will be mis-
takenly considered valid even though it has expired.

2.1 Some notations and rules
We write A says S to mean that principal A supports the state-

ment S (an assertion or a request). We write A ⇒ B when A speaks
for B, meaning that if A makes a statement then B makes it too:1

if (A ⇒ B) and (A says S)
then (B says S)
We think of A as being stronger than B. The ⇒ relation is a

partial order; that is, it is reflexive, antisymmetric, and transitive. It
obeys many of the same laws as implication, so we use the same
symbol for it. Principals include:

• Simple principals. Users, machines.
• Channels. Network addresses, encryption keys. If S appears

on channel C then C says S. In particular, K says S represents a
certificate containing S and signed by K. A channel is the only kind
of principal that can directly make a statement, since a message
can arrive only on a channel.

• Groups. Sets of principals. If A is a member of G then A ⇒
G, so A says S implies G says S. A group can be thought of as the
disjunction of its members.

• Principals in roles. We write A as R for A in role R (for ex-
ample, Bob as Admin for Bob acting as an administrator). A princi-
pal can adopt a role in order to reduce its rights [Lampson et al.
1992, Section 6]. That is, A ⇒ (A as R).

1 Although our logic includes propositional logic, in this report we do not de-
scribe any formal notations or rules for propositional connectives. Instead, we
use English keywords, like “if” and “then”, and informal reasoning.

5/35

• Conjunctions of principals. We write A ∧ B for the conjunc-
tion of A and B. If both A says S and B says S then (A ∧ B) says S
as well.

• Principals quoting principals. We write B | A for B quoting A.
If B says A says S then (B | A) says S.

• Principals acting on behalf of others. We write B for A for B
acting on behalf of A. The principal B for A is stronger than B | A,
since (B for A) says S when B says A says S and in addition B is
authorized to act as A’s delegate.

The handoff axiom represents the transfer of authority:
if A says (B ⇒ A)
then (B ⇒ A)
In other words, we believe that B speaks for A when A says so.

Therefore, if A says (B ⇒ A) and B says S then A says S. Simi-
larly, we have a delegation axiom:

if A says ((B | A) ⇒ (B for A))
then ((B | A) ⇒ (B for A))
It means that we believe A when it says that B | A speaks for B

for A, that is, that B can act as A’s delegate.2 Therefore, if A says
((B | A) ⇒ (B for A)) and B says A says S then (B for A) says S.
Comparing the result (B for A) says S with that of a handoff, A
says S, we note that it mentions B: both delegate and delegator
lend some of their authority, and the identity of the delegate is not
forgotten.

The operations as, ∧, |, and for are monotonic with respect to
⇒: if B ⇒ B' and A ⇒ A' then

(B as A) ⇒ (B' as A')
(B ∧ A) ⇒ (B' ∧ A')
(B | A) ⇒ (B' | A')
(B for A) ⇒ (B' for A')

2.2 Logic and authentication
This section gives a simplified example of how logic can be

used to reason about authenticating compound principals; there is
more detail in later sections. In the example, a machine Vax4 is
booted with an operating system OS. Together, Vax4 and OS form
a node WS. A user Bob logs in to WS. We consider the reasoning

2 This axiom is not included in [10], but is suggested in [2]; we adopt it for sim-
plicity.

6/35

necessary to authenticate requests from this login session to a file
server FS.

In order to establish credentials, Vax4 must possess a secret.
For example, if (Kvax4, K-1

vax4) is a public key pair, then K-1
vax4 is a

suitable secret. Let K-1
vax4 be available only to Vax4’s boot firm-

ware, not to any of the operating systems it can run. At boot time,
K-1

vax4 is used to sign a boot certificate that transfers authority to a
newly generated key Kws; in the logic, this certificate reads:

(Kvax4 as OS) says (Kws ⇒ (Kvax4 as OS)) (1)
We call Kws the node key for WS. It speaks not for Kvax4 but for a
weaker principal WS = (Kvax4 as OS), that is, Kvax4 in the role of the
boot image. After booting, WS gets the boot certificate and K-1, but
does not know K-1

vax4.
We treat login as a specialized form of delegation. When Bob

logs in, K-1
bob is used to sign a delegation certificate that transfers

authority to WS:
Kbob says ((Kws | Kbob) ⇒ (Kws for Kbob)) (2)
Consider now a request from the login session to a file server

FS. There must first exist a channel Cbob over which to issue re-
quests. As observed by FS, a request appears as a statement RQ on
this channel:

Cbob says RQ (3)
To back RQ, WS supplies (1) and (2), and writes a channel certifi-
cate:

(Kws | Kbob) says (Cbob ⇒ (Kws for Kbob)) (4)
This represents a handoff from the node to the channel.

By applying the delegation axiom to the delegation certificate
(2), FS can deduce

(Kws | Kbob) ⇒ (Kws for Kbob)
so the channel certificate (4) implies

(Kws for Kbob) says (Cbob ⇒ (Kws for Kbob)) (5)
Further, FS can deduce

Cbob ⇒ (Kws for Kbob) by applying the handoff axiom to (5), so
the request (3) yields

(Kws for Kbob) says RQ (6)
And FS can deduce

Kws ⇒ (Kvax4 as OS)
by applying the handoff axiom to the boot certificate (1), so (6)
yields

((Kvax4 as OS) for Kbob) says RQ (7)

7/35

by monotonicity.
We still must prove that Kvax4 and Kbob correspond to Vax4 and

Bob. To do this we must trust some certification authority or CA.
Trusting a CA with known key Kca means believing that Kca speaks
for any principal; in particular, Kca ⇒ Vax4 and Kca ⇒ Bob. Thus,
FS can use the certificates

Kca says (Kvax4 ⇒ Vax4)
Kca says (Kbob ⇒ Bob)

and the handoff axiom to obtain
Kvax4 ⇒ Vax4
Kbob ⇒ Bob

then (7) to conclude
((Vax4 as OS) for Bob) says RQ

by monotonicity. That is, FS knows that Vax4 running OS requests
RQ on behalf of Bob. The access control algorithm given in
[Lampson et al. 1992, Section 9] can now determine whether the
request should be granted.

The remainder of the paper describes how this authentication
logic is implemented in Taos.

3 An API for Authentication
The logic is rather complex to be presented directly through a

programming interface. Instead, Taos defines a simple and consis-
tent set of security services. They are based on an abstract datatype
Prin that represents principals, and a subtype Auth that represents
principals that processes can speak for.

Section 3.1 gives the interface for sending and receiving au-
thenticated messages; that is, it explains how a process that can
speak for a principal P can make another process believe P says S.
Section 3.2 gives the interface for authenticating and authorizing
requests. Section 3.3 gives the interface for managing Auths; that
is, it explains how a process can change the set of principals that it
can speak for.

For brevity, we omit exceptions from the signatures of proce-
dures.

3.1 Authenticating messages
We begin with a simplified version of the interface for sending

and receiving authenticated messages, and improve it later in this
section:

8/35

PROCEDURE Send(dest:Address; p:Auth; m:Msg);
PROCEDURE Receive(): (Prin, Msg);
Send transmits the statement p says m to the process at address

dest. Symmetrically, if Receive returns (p,m), some process that
speaks for p has invoked Send(dest,p,m); in other words, the re-
ceiver can believe that p says m.

The interface has no notion of a principal that a process speaks
for by default. Instead, the Auth argument to Send requires the
process to specify explicitly the principal that is uttering each mes-
sage. Often a process has only one Auth, and we could have added
a “working authority” to the process state and a SetWorkingAuth
procedure (by analogy with the working directory), and dropped
the Auth argument to Send or made it optional. This is similar to
what Unix does with the effective uid. Or, to accommodate multi-
threaded programs, we could have made the working authority part
of the thread state.

This simplified version of the interface is unsatisfactory be-
cause it ties authentication and communication together too
closely. To separate them, we make explicit the relation between a
channel c and the principal p that it speaks for.

We assume that secure channels are available. A channel is se-
cure if every message received on it comes from the same process.
We might also require messages on the channel to be secret, that is,
received only by certain processes; this is a simple extension that
we will not discuss further. An abstract datatype Chan represents
secure channels.

To transmit an authenticated message, a process sends it on a
secure channel, the receiver gets the channel c on which the mes-
sage arrives, and a new operation GetPrin returns the p that the
channel speaks for. In other words, c names the principal p.

For this to work, a given channel must speak for at most one
principal, so we need a cheap way to make channels. Our method
is to take a single channel c on which a process can send securely,
and then to multiplex many subchannels onto c, one for each prin-
cipal that the process speaks for. Sending and receiving is done on
these subchannels.

Our second try at an interface is thus:
PROCEDURE GetChan(dest:Address): Chan;
PROCEDURE GetSubChan(c:Chan; p:Auth): SubChan;
PROCEDURE Send(dest:SubChan; m:Msg);
PROCEDURE Receive(): (SubChan, Msg);

9/35

PROCEDURE GetPrin(c:SubChan): Prin;
The sending process first calls GetChan to get a secure channel

c to the process at dest and then calls GetSubChan(c, p) to get a sub-
channel that speaks for p. The receiver calls GetPrin to recover a
Prin.

The actual Taos interface has a further refinement: a process
can utter many statements, perhaps made by different principals, in
a single message. For example, one call could pass an array of
names of files to delete and a parallel array of principals that are
authorized to do the deletions. To make this work, we must reveal
the addressing mechanism for subchannels: it is an integer called
an authentication identifier or AID. The sender calls GetAID to learn
the AID for a principal and sends it as an ordinary data value in the
message. The receiver pairs the channel on which the message ar-
rives with this AID to recover the speaking principal. So the actual
Taos interface is:

PROCEDURE GetChan(dest:Address): Chan;
PROCEDURE GetAID(p:Auth): AID;
PROCEDURE Send(dest:Chan; m:Msg);
PROCEDURE Receive(): (Chan, Msg);
PROCEDURE GetPrin(c:Chan; aid:AID): Prin;
In Taos, the messages exchanged in this way are normally the

call and return messages of remote procedure calls. RPC marshals
an Auth parameter p by sending the result of Get AID(p), and unmar-
shals aid from channel c as the result of GetPrin(c, aid). It also gets
the channel from the RPC binding, and of course it encapsulates
the Send and Receive calls. The result is that the RPC client can
simply use Prins and Auths as arguments and results, and does not
have to call any of the procedures in this interface. This works for
both calls and returns, so mutual authentication is possible.

3.2 Basic authentication and authorization
The receiver of an authenticated message calls GetPrin to find

the Prin p that represents the sender of the message. It can then use
Authenticate to turn p into a string name.

PROCEDURE Authenticate(p:Prin): TEXT;
The result of Authenticate can represent a compound principal

such as Bob as admin, or it can be a simple name. Simple names
are convenient for existing applications; Section 4.5 describes the
somewhat ad hoc rules Taos uses to reduce compound principals to
simple names.

10/35

The purpose of authentication is to tell the authorization ser-
vice the source of a request. We therefore introduce another ab-
stract datatype ACL to represent access control lists, and the au-
thorization operation Check to determine whether acl grants access
to p.

PROCEDURE Check(acl:ACL; p:Prin): BOOL;
Check both hides the details of naming and allows a convenient

and efficient cache of recent successful authorizations.
Taos also offers operations for constructing and examining

ACLs, but they are beyond the scope of this paper.

3.3 Managing principals
A Taos process can obtain an Auth in five ways:
• by inheritance from a parent process,
• by presenting a login secret,
• by adopting a role,
• by delegating rights, or
• by claiming delegated rights.
All but the first of these produce a new and unique Auth. In par-

ticular, each user session on a machine is represented by a different
Auth. The interface for managing Auths is:

PROCEDURE SelfQ: Auth;
PROCEDURE Inheritance(): ARRAY OF Auth;
PROCEDURE New(name, password: TEXT): Auth;
PROCEDURE AdoptRole(a:Auth; role:TEXT): Auth;
PROCEDURE Delegate(a:Auth; b:Prin): Auth;
PROCEDURE Claim(b:Auth; delegation:Prin): Auth;
PROCEDURE Discard(a:Auth; all:BOOL);
Self returns a default Auth for the current process. The default is

specified when the process is created. Inheritance returns all the
Auths that the process inherits from its parent.

New is used to generate entirely new credentials. The parame-
ters describe a user name and a user-specific secret sufficient to
generate the credentials described in Section 4.3. The result is an
Auth that represents node for name, where node is the local node.
This result reflects the fact that the user cannot make a request
without involving the machine and the operating system.

AdoptRole weakens an authority by applying a role. If a repre-
sents A, then the result of AdoptRole(a,role) represents A as role.

Roles are used in two ways in Taos. First, a process can restrict
its rights to those necessary to fulfill a particular function by call-
ing AdoptRole on one of its existing Auths. Second, a Taos node can

11/35

give some of its rights to a trusted process. Taos uses secure load-
ing to determine whether an executable image is certified (see Sec-
tion 4.4). After loading a certified image, Taos calls AdoptRole to
create an Auth weaker than its own, which it hands off to the new
process (for example, AdoptRole(Self(), “telnet-server”) for a login
daemon). This mechanism bears some resemblance to Unix setuid
execution. However, in Taos there is a stronger guarantee about the
loaded program, and the program need not receive all the rights of
the node. Further, the resulting rights, like those of the node, can
be exercised over the network.

There is a natural role associated with many groups, for exam-
ple the role of administrator with the group of administrators.
Hence we use group names as roles, and adopt the general rule that
if A is a principal, G a group, and A ⇒ G then (A as G) ⇒ G.

The procedures Delegate and Claim are used in tandem to im-
plement delegation; Figure 1 shows an example. Suppose process
X has an Auth a that represents A, process Y has an Auth b that
represents B, and X wants to give to Y an authority that represents
B for A by delegation. First, X gets from Y a Prin pb that represents
B. Then X calls Delegate(a, pb) to make a new Auth c that represents
A but also carries the property that A says ((B | A) ⇒ (B for A)).
Now X sends c to Y, which receives it as the Prin pc. Finally Y calls
Claim(b, pc) to get an Auth d that represents B | A, and hence B for A
by the delegation axiom. Before doing this, Y may wish to call
Authenticate(pc) to find out what principal d will represent.

A process can make an Auth a invalid by calling Discard. The
effect is that once the receiver caches time out, the process can no
longer use a to speak for a’s principal. If all is TRUE, a also becomes

Figure 1: An example of delegation

12/35

invalid in all the processes that have inherited it; this allows a
process to take an authority away from its children, for example.

If a was the result of Delegate, invalidating it has another ef-
fect: any Auth derived from a by Claim will also become invalid
within a fairly short time (at most 30 minutes). The same thing
happens if the process that called Delegate terminates.

The API provides no direct access to the logical operators | and
∧ or to the handoff rule.

4 The Authentication Agent
The authentication agent handles most of the complexity of au-

thenticating requests from compound principals. It has four parts.
The secure channel manager creates process-to-process secure
channels. The authority manager associates Auths with processes
and handles authentication requests. The credentials manager
maintains credentials on behalf of local processes and validates
certificates authored on other nodes. Finally, the certification li-
brary establishes a trusted mapping between principal names and
cryptographic keys, and between groups and their members. Figure
2 shows the structure of the authentication agent; arrows indicate
call dependencies.

Figure 2: Structure of the authentication agent

13/35

Only a few changes were needed to the rest of Taos to support
the authentication agent: implementing authority inheritance in the
process manager; supporting secure loading; and adding Auth pa-
rameters to all security-sensitive kernel calls.

4.1 The secure channel manager
The secure channel manager implements the Chan datatype de-

scribed in Section 3.1. It does not implement secure channels itself.
Instead, it controls the construction of node-to-node channels, and
then uses them to provide process-level channels to its clients.
Since the purpose of authentication is to prove that a channel utters
a request on behalf of a principal, the secure channel manager must
be able to attribute channels to processes and thereby link channels
to the principals for which they speak. Our design does not man-
date any one technique for implementing secure channels; such
techniques are well documented [13].

4.1.1 Node-to-node channels
Given two nodes A and B, it is easy to establish a shared-key

channel C between them. We use the following protocol, which is
described in more detail in Lampson et al. [1992, Section 4]. In
brief, A invents a random number Ja and sends it to B encrypted
under the public part of B’s key Kb. Similarly, B sends Jb encrypted
under A’s key Ka. Note that this is encryption for secrecy rather
than integrity. Now, both A and B can compute a shared key by
combining Ja and Jb via a hash function. A shared key established
in this fashion can be used to form a secure channel C, which
speaks for Kb from A’s viewpoint and for Ka from B’s viewpoint.

The secure channel manager maintains a cache of keys shared
with other nodes, indexed by node address and used to implement
GetChan and Send. Another cache contains a mapping from shared
keys to node keys, and is used by Receive to get from the shared
key that successfully decrypts a message to a node key. Both of
these caches can be flushed as necessary. In fact, both are flushed
periodically in order to invalidate old keys. The key-to-node-key
mapping is flushed half as often as the address-to-key mapping so
as to prevent misses caused by partners using older keys.

Each node is responsible for caching and timing out the keys it
shares with other nodes, and either end of a secure channel can
trigger the generation of a new shared key. When B re-executes the

14/35

key-establishment protocol, the resulting channel from A still
speaks for Ka. Hence, rekeying does not invalidate authentication
state based on node keys.

Taos does not implement hardware secure channels. The key
exchange mechanism it implements is, however, suitable for con-
structing them. Herbison [1990] discusses the use of encrypting
network controllers to build efficient secure channels. Our system
design is intended to operate best with encryption-capable control-
lers. DES [National Bureau of Standards 1977] hardware for such
controllers has been shown to operate at speeds of 1 Gbit/sec
[Eberle and Thacker 1992], so performance should not be a prob-
lem.

In our implementation, software DES is used to sign channel
certificates (see Section 4.3.4), but requests are made without sig-
nature to avoid the overhead of software encryption.

4.1.2 Process-to-process channels
The channels offered to clients of the API are always between

two processes. These channels are formed by multiplexing proc-
ess-level data across the node-to-node channels discussed in the
previous section. The concrete form of the Chan datatype differs
depending on the secure channel implementation. However, all
channel implementations must support naming of channels by
ChanIDs:

TYPE ChanID = { nk:KeyDigest; pr:INTEGER; addr:Address };
The nk field of ChanID names the node key of the partner, pr

identifies the partner process, and addr indicates the address of the
partner authentication agent. A message digest function is applied
to node keys in order to produce small values for the nk field. We
use the MD4 message digest function [Rivest 1991].

In Taos we exploit the fact that most communication employs a
transport protocol under our control. We identify each process with
a 32-bit process tag (PTag)3 and mark all transmissions with the
PTag of the sending process.

The secure channel manager exports the primitives:
PROCEDURE GetChanID(ch:Chan): ChanID;
PROCEDURE PTagFromChan(c:ChanID): PTag;
The receiver of a message can call GetChanID to obtain a

ChanID given an abstract Chan. At the source of channel c—where

3 Process tags are never reused; this limits Taos to 232 processes per boot.

15/35

c.nk is the digest of the local node key—PTagFromChan(c) can be
called to derive the PTag for the process that controls c. In Taos,
we put a PTag in the pr field and hence can implement GetChanID
by concatenating the sender’s node key, PTag, and node address.
The implementation of PTagFromChan just returns c.pr. Process-
level multiplexing can also be done with standard protocol imple-
mentations such as TCP/IP and UDP/IP that use small integer port
numbers to identify the origin and destination of messages within a
node. Port numbers would be perfect process identifiers (that is,
values of the pr field) if they were not reusable. One possible
workaround is to place restrictions on the reuse of port numbers.
Another is to treat process channels as secure connections that
must be explicitly opened and closed; this requires considerable
care.

4.2 The authority manager
The authority manager implements the operations on Auths and

Prins discussed in Sections 3.2 and 3.3. The internal interface to the
authority manager parallels the API quite closely. However, for
each Auth supplied as an argument, the kernel call dispatcher ap-
pends the PTag of the caller. This PTag argument is used to ascer-
tain that the caller owns each supplied Auth. We say that a process
owns an Auth if the authority manager has given that process the
right to use it. Whenever an Auth is explicitly returned to a process
through the API, the calling process owns it.

Each new Auth is assigned a unique AID by the authority man-
ager. In our implementation AIDs are 96 bits wide, so there is no
need to reuse one. The authority manager maintains a table with
credentials for the Auths it creates, indexed by AID. Each entry con-
tains:

• credentials for the corresponding Auth,
• a list of PTags of processes that own this Auth,
• credentials for unclaimed delegations (only if this Auth re-

sulted from a call to Delegate), and
• a source from which to refresh delegation credentials (only if

this Auth resulted from a call to Claim).
The precise structure of credentials is irrelevant to the authority

manager. For now, we think of them as bundles of certificates,
which for example prove that a channel speaks for a principal or
that a principal is another’s delegate.

16/35

Much like Unix file descriptors, Auths can be passed by inheri-
tance to child processes. The authority manager provides two
primitives that the process manager can use to implement this in-
heritance:

PROCEDURE Handoff(a:Auth; ptag:PTag);
PROCEDURE PurgePTagCptag: PTag);
Handoff adds ptag to the list of PTags of processes that own a. It

is called when an Auth is inherited from a parent process.
PurgePTag eliminates all instances of ptag in the credentials table.
It is called when the process identified by ptag terminates.

4.2.1 Callbacks
As we have seen, AIDs and channels are used to represent prin-

cipals in network protocols. For this to work, the authority man-
ager must be prepared to produce credentials on behalf of any Auth
it manages. These credentials are obtained with callbacks to save
the cost of passing complex credentials repeatedly. In fact, creden-
tials are generated lazily, only when needed, and AIDs may be
passed before the corresponding credentials exist. Although cre-
dentials could easily be bundled with requests, they are large
enough (> 1 kbyte) to affect communications performance. Since
the results of authentication are cached extensively, callbacks im-
prove performance for nearly all applications, even in high-latency
networks.

Suppose a user-level process receives a request on a channel
ch. In this case, the API function GetPrin returns a Prin p con-
structed from GetChanlD(ch) and the AID accompanying the request.
Now the process can ask its authentication agent to resolve p into a
principal name, for example with a call to Authenticate(p). We use
the PrinID datatype to represent Prins that are passed across address-
space boundaries (for instance between user space and the authen-
tication agent):

TYPE PrinID = { ch:ChanID; aid:AID };
The implementation of Authenticate(p) asks the requester’s

agent (at p.ch.addr) to provide credentials for p. This agent looks up
p.aid in its credentials table and determines whether
PTagFromChan(p.ch) specifies a process that owns the correspond-
ing Auth. If it does, the requester’s agent returns a channel certifi-
cate as proof that the channel speaks for the principal that p repre-
sents. This proof consists of the credentials found in p.aid’s creden-

17/35

tials-table entry and a statement that p.ch quoting p.aid speaks for
the principal (see Section 4.3.1).

It is critical for performance that the results of Authenticate be
cached. Caching can be implemented in user space, in the operat-
ing system, or both. Our implementation caches the results of au-
thentication callbacks in user space, with a timeout equal to the
validity interval of the supplied channel certificate up to a maxi-
mum of 30 minutes.

A callback also occurs when a call Claim(me, p) activates a
delegation. The delegate’s authentication agent passes p in a call-
back to the delegator’s agent, which uses p.aid to find credentials
suitable for signing a delegation certificate and returns a signed
certificate to the delegate’s agent. That agent must remember p so
that it can repeat the callback to refresh the delegation in case it
expires. The delegation certificate need not be concealed. Any
agent may request a copy, since it is useful only to the delegate’s
agent.

4.3 The credentials manager
The credentials manager is the heart of the Taos authentication

system. Its primary functions are to build, check, and store creden-
tials. We explain the form of credentials and their logical meaning
in the first two subsections. Then we give the interface to the cre-
dentials manager and discuss techniques for avoiding signatures.

4.3.1 Credentials
We understand credentials as having logical meanings. A cre-

dential is evidence that one principal Q speaks for another princi-
pal P. If the credential were written as a formula M, its recipient
would want to check that M implies Q ⇒ P.

Taos encodes credentials as S-expressions. The encoding is de-
signed to make straightforward the proof of the theorem that M
implies Q ⇒ P. If an S-expression is a well-formed credential,
then there is a simple procedure for extracting P and Q from it that
ensures that M implies Q ⇒ P. If in addition all signatures in the
S-expression are recent and correct, then the S-expression is said to
be valid; the S-expression is interpreted as M only if it is valid.
Thus, deriving Q ⇒ P is reduced to parsing a credential and check-
ing signatures.

18/35

In this section we define our S-expression grammar for creden-
tials. In Section 4.3.2 we give a table of correspondences between
S-expressions and logical formulas, effectively recovering the
logical form of a credential from the S-expression encoding. This
logical form is used only in explaining our implementation; the
implementation does not manipulate formulas. We also describe
how to check whether a credential is valid.

Table 1 gives the grammar for credentials. Names, keys,
PrinDs, and signatures are terminals. The main production is the
one for channel, because requests always arrive on channels. The
name components of primary credentials are only hints, used to
simplify the mapping of keys into names. We say that a credential
y is embedded in a credential x if y is a subexpression of x.

A certificate is an instance of one of the first group of rules in
the credentials grammar. The signature in a certificate includes the
interval of time for which it is valid plus an unforgeable value
identifying the signer. This value is a MD4 digest of the certificate,
encrypted by a RSA secret key [Rivest et al. 1978]. The digest is
computed over the entire certificate, excluding embedded signa-
tures, by a one-way function that reduces its input to a size small
enough to sign conveniently; the function is one-way in the sense
that it is computationally hard to find a different input with the
same digest.

channel = (‘channel’ prin prinID signature)
boot = ‘boot’ k_as key signature)
login = (‘login’ k_as session signature)
session = (‘session’ key boot signature)
delegation = (‘for’ delegator delegate signature)

p_as = (‘as’ prin role) | primary
k_as = (‘as’ k_as role)
primary = (key name)

prin = boot | login | delegation | p_as
delegator = prin
delegate = prin
role = name

Table 1: Grammar for credentials

19/35

We now discuss specific credentials in some detail. For each
type of signed credential we discuss an example, borrowing con-
text from Section 2.2.

Boot certificates. A boot certificate describes a handoff from a
machine key to a node key. In our example, the meaning M of the
boot certificate is:

(Kvax4 as OS) says (Kws ⇒ (Kvax4 as OS)) (8)
From M and the handoff axiom, we obtain:

Kws ⇒ (Kvax4 as OS)
which is the formula Q ⇒ P in this case. The boot certificate is
encoded as:

(boot (as (Kvax4 Vax4) OS) Kws sig1)
Login and session certificates. A login certificate is a special

form of delegation certificate. It denotes a delegation from a user’s
key to the conjunction of a node key with a temporary session key.
The user’s key should be in memory for the shortest possible time,
to reduce the chance that the key will be discovered by an attacker.
In Taos, it is present just long enough to sign the login certificate.
This certificate is of long duration, on the order of days. More so-
phisticated login protocols that take advantage of smart-cards can
produce equivalent login certificates [Abadi et al. 1993a].

The node key and the session key are combined in a session
certificate, which represents a handoff from the session key to the
node key. A session certificate has a short timeout and is refreshed
as needed until the end of the session. When the session ends, the
session key is discarded so that the session certificate can no
longer be refreshed. Because the login certificate delegates to the
node key and to the session key, the certificate becomes unusable
at the end of the session; the inclusion of the session key compen-
sates for the long timeout of the login certificate.

In our example, Bob, with key Kbob, logs in to WS. We still
have the boot certificate (8). Let Ks be the session key; the session
certificate adds:

Ks says ((Kvax4 as OS) ⇒ Ks) (9)
and the login certificate adds:

Kbob says ((P1 | Kbob) ⇒ (P1 for Kbob)) (10)
where P1 is ((Kvax4 as OS) ∧ Ks). From the conjunction of formulas
(8), (9), and (10), we can derive:

(Kws | Kbob) ⇒ (P1 for Kbob)

20/35

In the notation introduced above, the conjunction is M, and the
principals (Kws | Kbob) and (P1 for Kbob) are Q and P, respectively.

In our encoding the session certificate is embedded inside the
login certificate, and the boot certificate inside the session certifi-
cate:

(login
 (Kbob Bob)
 (session Ks (boot (as (Kvax4 Vax4) OS) Kws sig1) sig2)
 sig3)

The embedded certificates identify the machine, the node, and the
session key, and give credentials for them.

General delegation certificates. The general form of delega-
tion involves transfer of rights between principals. Continuing the
example, suppose that Bob on WS delegates to a node (Vax5 as
OS). The formula that corresponds to this delegation is:

(Kws | Kbob) says ((P3 P2) ⇒ (P3 for P2))
where P2 is (P1 for Kbob) and P3 is (Kvax5 as OS). Conjoining this
formula with those for Bob’s login (8), (9), and (10), and with the
boot certificate for (Vax5 as OS):

(Kvax5 as OS) says (Kws' ⇒ (Kvax5 as OS))
we can prove:

(Kws' | Kws | Kbob) ⇒ (P3 for P2)
In our encoding the entire delegation certificate is:
(for
 (login... sig3)
 (boot (as (Kvax5 Vax5) OS) Kws' sig4)
 sig5)

The login certificate given above is nested here in its entirety (ab-
breviated with an ellipsis) and used as the source of a delegation.
The delegate is the boot certificate for Vax5 as OS.

Channel certificates. Ultimately, channels are the only princi-
pals that make requests directly. A request on a channel is attrib-
uted to a principal that has handed off some of its rights to the
channel. A channel certificate represents this handoff. In our sys-
tem, each certificate authenticates a channel multiplexed on a
node-to-node key. More precisely, the channel is a node-to-node
channel quoting a process quoting an AID. Its encoding is a textual
representation of the PrinID datatype from Section 4.2.

In our example, a channel certificate for a channel Cbob from
Bob means:

21/35

(Kws | Kbob) says (Cbob ⇒ P2)
Conjoining this formula with those for Bob’s login (8), (9), and
(10), we can now prove:

Cbob ⇒ P2
When Cbob is the channel key47 | ptag13 | aid42, this certificate is
encoded as:

(channel
 (login... sig3)
 key47 ptag13 aid42
 sig4)
Because channels are typically short-lived, a channel certificate

normally has a short validity interval.

4.3.2 The meanings of credentials
As the previous examples suggest, each valid credential x in

the grammar has a logical meaning M(x). Now we define M in
general. Since M is a function, the mapping from S-expressions to
formulas is clearly unambiguous. We define validity later in this
section.

It is convenient to use several auxiliary functions. A function I
gives us the immediate meaning of a credential. Then M(x) is de-
fined to be I(x) conjoined with I(y) for every credential y embed-
ded in x. Thus, the interpretation of a credential is its immediate
meaning, plus the meaning of any embedded credentials. In the
cases of primary, p_as, and k_as credentials, which bear no sig-
nature, I(x) is simply true. In the other cases, I(x) is the assertion
made by the top-level signature; it does not refer to other signa-
tures or their timestamps, and has the form

S(x) says (T(x) ⇒ P(x))
where P(x) and T(x) are principals and S(x) is the speaker, the prin-
cipal that issues the credential. In particular, when S(x) is a key, it
is the key that should be used in the credential’s signature.

In each case, the purpose of a credential x is to establish that
Q(x) speaks for P(x). More precisely, the formula M(x) should im-
ply Q(x) ⇒ P(x). For example, a boot certificate x of the form

(boot (Kvax4 Vax4) Kws signature)
means Kvax4 says (Kws ⇒ Kvax4); this formula is M(x). Let Q(x) be
Kws and P(x) be Kvax4; by the handoff axiom, M(x) implies Q(x) ⇒
P(x). In general, we have:

22/35

THEOREM 1. For every credential x, it is provable that
if M(x) then Q(x) ⇒ P(x)
PROOF. We prove the theorem by induction on the structure of

credentials. We use different strategies in the cases that correspond
to credentials with top-level signatures and those that do not.

When x is a credential with a top-level signature, in order to
derive Q(x) ⇒ P(x) from M(x) it suffices to obtain both of the fol-
lowing:

1. Q(x) ⇒ T(x), and
2. if S(x) says (T(x) ⇒ P(x)) then T(x) ⇒ P(x).

In all cases (1) will be a consequence of the meanings of embedded
credentials. To obtain (2), we may use either

• S(x) ⇒ P(x), and then the handoff axiom applies; or
• P(x) is B for A and T(x) is B | A for some A and B such that

S(x) ⇒ A, and then the delegation axiom applies.
As we show in the Appendix, the definitions of Table 2 satisfy

these properties. The cases of credentials without top-level signa-

x S(x) T(x) P(x) Q(x)
boot Q(x.k_as) x.key P(x.k_as) x.key
session x.key P(x.boot) x.key Q (x.boot)
login Q(x.k_as) (P(x.s.boot)

 ∧ P(x.s))
 | P(a:.k_as)

(P(x.s.boot)
 ∧ P(x.s))
for P(x.k_as)

 Q(x.s.boot)
| Q(x.k_as)

dele-
gation Q(x.d’gator) P(x.d’gate)

| P(x.d’gator)
P(x.d’gate)
for P(x.d’gator)

 Q(x.d’gate)
| Q(x.d’gator)

channel Q(x.prin) x.prinID P(x.prin) x.prinID
p_as P(x.prin)

as x.role
Q(x.prin)
as x.role

k_as P(x.k_as)
as x.role
or x.key

Q(x.k_as)
as x.role
or x.key

primary x.key x.key

The immediate meaning I(x) of a credential x is S(x) says (T(x) ⇒ P(x)) when
S(x) is defined, and true otherwise. The meaning M(x) of a credential x is the
conjunction of I(x) with the immediate meanings of any credentials embedded
in x. In all cases, M(x) implies Q(x) ⇒ P(x). We abbreviate session by s.

Table 2: The logical meaning of credentials

23/35

tures are mostly straightforward; we treat them in the Appendix as
well. □

A credential is valid if all the signatures it contains are well-
formed, timely, and performed with the proper key. The proper key
K for signing a certificate x is defined from S(x), with a clause for
each of the possible forms of S(x):

• The proper key for a principal of the form A as R or A | A' is
the proper key for A, since it is A that must apply the signature.

• The proper key for a key is the key itself.
In general, K is the key that the principal S(x) uses. If x is valid,

then it has recently been signed with S(x)’s key K, so we can inter-
pret x as a formula I(x) of the form S(x) says (T(x) ⇒ P(x)). By
convention, S(x) should use K to sign x only when S(x) supports
T(x) ⇒ P(x). This is the justification for our logical reading of
valid credentials.

An obvious generalization of this definition of validity allows
any key that speaks for K to sign the certificate. The generalization
is used in Section 4.3.4 to allow channel certificates to be signed
with DES keys.

Theorem 1 guarantees that validating a credential x suffices to
show that Q(x) ⇒ P(x): if x is valid, then it is interpreted as M(x)
and the theorem applies. Corollary 2 makes this claim precise:

COROLLARY 2. For every certificate y, assume that S(y) says
(T(y) ⇒ P(y)) is true for the validity interval of y if the proper key
signs y. Let x be a valid credential. Then Q(x) ⇒ P(x) is true.

PROOF. If x is valid, then each certificate y embedded in x is
valid: y is signed with the proper key and its validity interval in-
cludes the present. By our hypothesis, S(y) says (T(y) ⇒ P(y)) is
true; that is, I(y) is true. If x itself bears a signature, then similarly
S(x) says (T(x) ⇒ P(x)) is true. Therefore, M(x) is also true, as
M(x) is the conjunction of I(x) with I(y) for each y embedded in x.
By Theorem 1, Q(x) ⇒ P(x) is true. □

4.3.3 The Credentials interface
The credentials manager exports the Credentials interface to the

authority manager. This interface defines an abstract type CredT
that represents credentials, as well as procedures for constructing
CredTs and for signing and validating channel certificates. A CredT
defines a principal P that can make requests, and contains an ex-

24/35

pression in the credentials grammar sufficient to prove that some
other principal can speak for P.

The credentials manager holds a CredT representing the creden-
tials for the node. Although the Firefly lacks the firmware neces-
sary to generate a node key securely, Taos imitates secure booting
by generating a boot certificate and node key at system-startup
time. The node’s CredT contains this certificate and key.

The operations on credentials are:
TYPE Cred = TEXT;
PROCEDURE New(name, password: TEXT): CredT;
PROCEDURE AdoptRole(t:CredT; role:TEXT): CredT;
PROCEDURE Sign(t:CredT; p:PrinID): Cred;
PROCEDURE Validate(cr:Cred; p:PrinID): TEXT;
PROCEDURE Extract(cr:Cred): Cred;
PROCEDURE SignDel(t:CredT; cr:Cred): Cred;
PROCEDURE ClaimDel(t:CredT; cr:Cred): CredT;
Each value of the Cred datatype contains a textual representa-

tion of credentials according to the grammar of Table 1.
New produces a CredT containing a login certificate and a ses-

sion key. The CredT returned by AdoptRole contains credentials for
t as role.

The authority manager uses Sign to produce channel certificates
in response to authentication callbacks. Similarly, it uses Validate to
check the results of authentication callbacks and return principal
names. Extract strips off an outer-level channel certificate, and re-
turns the credentials of the principal for which the channel speaks.

The delegator’s authority manager implements Delegate by
finding and validating a channel certificate for the delegate. It then
calls Extract to get the delegate’s credentials, and stores the result.
The delegate’s authority manager implements Claim by asking the
delegator’s agent for a delegation certificate (produced with
SignDel) and using it to call ClaimDel. The result is a CredT repre-
senting delegate for delegator.

4.3.4 Signature techniques
We use three techniques to minimize the number of public key

encryptions required to sign certificates:
• As described in Section 4.1, we can establish a shared key K

between two nodes A (with key Ka) and B so that B believes that K
speaks for Ka. Therefore, A can sign certificates about channels to
B by encrypting with K instead of Ka. Only B need believe these

25/35

certificates. DES encryption (under K) is much faster than RSA
encryption (under Ka).

• When one process delegates to another on the same node, it is
possible to avoid one signature. The delegation certificate structure
remains the same, but no cryptographic signature is needed. If an
off-node delegation follows, the signature of the outer certificate
implies validity for the inner one, because both use the same key.

• When refreshing nested certificates, care must be taken not to
invalidate higher-level signatures. It is sufficient to omit nested
signatures from the certificate digests. For example, when a ses-
sion certificate is refreshed, its validity times are changed. An en-
closing login certificate can avoid refresh only if its digest omits
the nested signature. This omission is safe since there is no men-
tion of nested signatures in the immediate meaning of credentials.

4.4 The certification library
If ACLs contained public keys instead of human-sensible

names, network security would be considerably less complex. Un-
fortunately, keys are big numbers that are too unwieldy for human
users to manipulate. Moreover, at the highest level, computer secu-
rity applies to names for people and resources. At some point there
needs to be a trusted mapping from keys to the principal names
they represent. Similarly, there need to be trusted mappings from
group members to group names and from image digests to role
names.

The task of the certification library is to implement these map-
pings. We also use it to recover keys from stable storage given
passwords short enough for people to remember. Our certification
authority (or CA, see Section 2.2) is a simple program that man-
ages the database underlying these services. This CA is off-line in
the sense that clients need not communicate with it in real time in
order to trust its statements. A CA that could function without any
network connections might be an interesting addition to our work.
For example, we could use a portable computer to write certifi-
cates, keep the computer in a safe, and allow floppy disks as the
only means of communication with the rest of the world.

Bootstrapping trust. A practical system of any size must base
trust on shared knowledge of a trusted CA. In Taos, this informa-
tion takes the form of a CA public key. Certificates signed with

26/35

this key are trusted. It is crucial to protect the corresponding secret
key.

A user learns his own secret key and the public key of his
trusted CA by decrypting a user-specific string stored in the name
server.4 This string contains the user’s private data encrypted under
a DES secret derived from the user’s password. We keep analo-
gous strings for nodes. Storing user secrets in this way would not
be necessary if users carried public key smart-cards [Abadi et al.
1993a; Quisquater et al. 1991].

Name certificates. These describe a mapping from keys to
names. They are signed by a CA trusted for this purpose, much like
CCITT X.509 certificates [CCITT 1988]. The logical form of a
certificate that maps Ku to U is:

Kca says (Ku ⇒ U)
A simple extension of the grammar described in the previous sec-
tion is used to express these statements.

Since certificates are statements signed off-line, they can be be-
lieved even if retrieved from untrusted storage. In Taos, we use a
replicated, highly available name service [Birrell et al. 1993] to
store name certificates. Certificates are indexed by name in this
store. The replication makes a denial-of-service attack more diffi-
cult.

We may now continue the example of Section 4.3.1. Given
valid name certificates that map Kbob to Bob and Kvax4 to Vax4, we
obtain:

Cbob ⇒ ((Vax4 as OS) for Bob)
Therefore, when a request appears on the channel Cbob, it is at-

tributed to (Vax4 as OS) for Bob.
Membership certificates. These state that a principal U speaks

for (is a member of) a group G:
Kca says (U ⇒ G)
They are used in Taos ACL checking, and also in role process-

ing and secure loading.
Image certificates. These are used in secure loading to verify

the executable image of a recently loaded program and to name the
role under which that program should run. The purpose of an im-

4 We could easily extend our system to incorporate a hierarchy of CAs. For a
system that implements a CA hierarchy, some indication of the local CA’s loca-
tion in the hierarchy would be required at well [Lampson et al. 1992, section 5].

27/35

age certificate is to establish that a given image digest I speaks for
a role name R:

I ⇒ R
(Think of R as the name of a program like emacs, or of a class of
programs like games.) It would be sufficient for the CA to produce
an image certificate:

Kca says (I ⇒ R)
Instead, the CA permits a user U to write an image certificate for
R. The CA issues:

Kca says ((U | R-owner) ⇒ R)
where R-owner is a special name associated with R (e.g., emacs-
owner with emacs). If Ku is U’s key, we obtain:

(Ku | R-owner) ⇒ R
This means that U can release a new version of R with digest I by
signing an image certificate:

Ku says R-owner says (I ⇒ R)
and then I ⇒ R follows.

Image digests can be computed using any secure one-way
function. Taos stores image certificates as a file property on certain
executable files.

4.4.1 The CertLib interface
The certification library exports the procedures:
PROCEDURE CheckKey(name:TEXT; k:Key): BOOL;
PROCEDURE IsMember(name, group: TEXT): BOOL;
PROCEDURE CheckImage(d:Digest; prog, cert: TEXT);
The credentials manager calls CheckKey to find and validate a

name certificate that states that k speaks for name. The IsMember
procedure ascertains whether name is a member of group.
Checklmage supports secure loading. It checks that the certificate
cert states that the image digest d speaks for the program prog, and
that cert is signed by a principal with control of images for prog.

4.5 Simplifying compound names
An authentication result in Taos is more often than not a com-

pound principal. The principals that result from credential valida-
tions have the form:

principal = name
 | (principal for principal)
 | (principal as role)

28/35

where name and role are strings. Existing applications often deal
only with simple names. The following function reduces a princi-
pal to a simple name:

• If the principal has a simple name, return it.
• If the principal is B for A, apply this function recursively to

A. (Checks can easily be added to guarantee that B is trustworthy.)
• If the principal is A as R, then apply this function recursively

to A. Take the resulting simple name, and find a membership cer-
tificate stating that it speaks for R. If successful, then return R, oth-
erwise fail.

For example, WS for Bob reduces to Bob, and WS for (Bob as
Admin) reduces to Admin if Bob ⇒ Admin (that is, if Bob is a
member of Admin).

5 Experience
The authentication system described in this paper was in daily

use for a year by a community of nearly 80 researchers and admin-
istrative personnel. In this section we discuss our experience, and
in particular the performance of our system.

5.1 Authentication for the Echo file system
The most commonly used authenticated application was Echo

[Birrell et al. 1993], a distributed file system used extensively
within Taos. The Echo environment exercised all the Taos security
features described in this paper except general delegation.

In addition to authenticating normal file system operations,
Echo allowed the use of roles to control access to protected parts of
the file system namespace. Users typically logged onto the system
with the role “normal user”, which indicated that they had no spe-
cial privileges. Administrators had the option of taking on other
roles when they wanted to access sensitive files. Using these roles
for system administration is more precise and less dangerous than
using a special super-user account with unqualified privileges (like
root under Unix).

It is often useful for a user to run programs with some of the
rights of a node. For example, a program might need control over
all the node’s processes, or over the node’s configuration files and
working space. We used secure loading to allow normal users to
run certain programs with enhanced rights.

29/35

5.2 Gateways
We built a gateway that allows ordinary NFS clients to access

the Echo file system. It uses standard methods to determine the
principal p making an NFS request and then forwards the request
to Echo. If the gateway runs as the principal G, then it can utter
forwarded requests as G | p. We could have allowed the principal
G | p in Echo ACLs. Instead, for each p we invent a name q, issue a
certificate Kca says ((G | p) ⇒ q), and then use q on ACLs for au-
thorizing forwarded requests from p. In some systems q is called a
proxy.

This approach can be applied to accept messages authenticated
by any other protocol. The tricky part is finding a place to put the
gateway where it can intercept and translate the authentication pro-
tocol, which is often application-specific.

To go in the other direction and translate one of our authenti-
cated messages p says m into another protocol, say Kerberos, the
gateway would have to be able to authenticate itself as p in Kerbe-
ros. To achieve this, it would need either to have the user’s pass-
word for long enough to obtain a Kerberos ticket-granting ticket,
or to act itself as a Kerberos authentication server. We have not
tried to implement this.

5.3 Performance
The performance of our system depends on the costs of the

cryptographic operations:

Our RSA implementation [Shand and Vuillemin 1993] is care-
fully coded in C and assembler. We use a 512-bit modulus and a
public key exponent of 3. The Firefly has 4 CVax processors, each
running at about 2.5 MIPS. Our multiprocessor implementation of
RSA signatures gains nearly a factor of two in speed. With only a
single processor, it takes 472 ms to compute a RSA signature; this
compares with 68 ms on a DECstation 5000, which runs at 20
MIPS. We use public-domain implementations of MD4 and DES
(in C); much faster ones are possible [Lampson et al. 1992, Section
4].

RSA sign RSA verify DES MD4
248 ms 16 ms 15 ms 6 ms/kbyte

30/35

Efficient RSA key generation is also important to our imple-
mentation. Using three separate threads running a randomized
prime generation algorithm [Knuth 1981, p. 388], we can produce
a new RSA key in 10-15 seconds.5 Only two primes are needed for
generating a key, but there is a large variance in the time required
for generating a prime. Using three threads significantly reduces
the average time required for generating two primes.

In Table 3 we show the results of measuring three basic au-
thentication operations. The numbers assume an existing node-to-
node secure channel and a loaded name certificate cache. We show
how time is divided between cryptographic functions and other
parts of the system. We estimate that RFC with non-trivial argu-
ments takes on the order of 5 ms [Schroeder and Burrows 1990].
The line labeled “S-expr” indicates the cost of parsing and writing
S-expressions. This cost is about one-third of the total, but it could
easily be reduced.

The first column of the table (Auth-login) shows the time re-
quired for the first authenticated RFC—subsequent calls to the
same server using the same credentials will get cache hits. The
caller’s credentials are those for a simple login session. This test
includes a callback to the caller’s agent and a subsequent channel-
certificate validation. We expect this cost to be incurred infre-
quently: for example, when the user’s machine first contacts a file
server, and whenever the credentials need refreshing thereafter
(every 30 minutes).

5 Even so, Taos precomputes session keys in background.

 Auth Delegate Auth
 login delegation

RSA sign — 1 × 248 ms —
RSA verify 3 × 16 ms 10 × 16 ms 7 × 16 ms
DES 2 × 15 ms 2 × 15 ms 2 × 15 ms
MD4 6 ms 18 ms 12 ms
S-expr 46 ms 165 ms 91 ms
RFC 2 × 5 ms 3 × 5 ms 2 × 5 ms
Total 140 ms 636 ms 255 ms
Measured 143 ms 671 ms 276 ms

Table 3: Authentication test timings

31/35

The second test (Delegate) measures the time taken for a
logged-in user to delegate to a logged-in user on another node.
Delegation requires a hidden authentication, and hence three RPCs
rather than two.

The final test (Auth-delegation) is similar to the first (Auth-
login), except that the caller’s credentials involve an additional
delegation. Once again, the costs shown are incurred only on the
first use of the credentials and each time the cache is refreshed.

There are two important facts to be gleaned from Table 3. First,
the cost of using credentials to make requests is considerably less
than that of delegation. This is good, since delegations occur much
less frequently than requests. Second, almost all of the component
costs of authentication are compute-intensive. Moving to a faster
processor should improve the actual performance linearly. The
Auth-login test should take less than 25 ms on a DECstation 5000.

Even with faster processors, it is clear that caching at several
levels is essential to system performance:

• The cache used to implement Authenticate prevents repeated
authentication callbacks. It has a timeout of roughly 30 minutes, so
there are at most two authentication callbacks to an Echo client in a
30-minute interval, regardless of the number of file system opera-
tions performed.

• The shared key cache in the secure channel manager prevents
unnecessary key exchanges. The keys stored there expire with a
much longer period (6 hours).

• The certification library maintains a cache that saves the re-
sults of name certificate validations. There a cached result can re-
main valid until the certificate expires, although we flush results
more frequently to speed up revocation.

Further caching is clearly possible. For example, the meanings
of common embedded credentials (such as boot certificates) might
be cached.

5.4 Scale
Although our implementation was not used on a large scale, the

technique of off-line certification with minimal reliance on on-line
services is well suited to large naming hierarchies [Lampson et al.
1992, Section 5.2]. The performance of our basic security primi-
tives is dependent on system scale only in the cost of fetching
static certificates such as those for names and group memberships.

32/35

In our implementation, this cost is only a small fraction of the total
overhead. While this cost might grow with the number and geo-
graphic distribution of certified users, it can be offset by caching,
hierarchical certification, and database replication.

Our design can accommodate fast revocation of name certifi-
cates along the lines discussed elsewhere [Abadi et al. 1993b;
Lampson et al. 1992], but we have not implemented this feature.
There is an inherent tradeoff between timely revocation and the
effectiveness of caching. This tradeoff becomes more significant as
the scale of the system increases.

6 Conclusion
We have described a framework for security in distributed sys-

tems that is based on logic. The logic takes shape in an operating
system that was in daily use by a substantial community. Our sys-
tem employs compound credentials to express the complex rela-
tionships between users, machines, and programs, yet little of this
complexity shows through to users and programmers. Moreover,
the careful optimizations that surround our use of public key cryp-
tography ensure that it does not hurt performance.

We have explained our system in logical terms, and in particu-
lar obtained a theorem that relates concrete credentials and their
logical meanings. It would be interesting to obtain further theorems
to prove the correctness of our implementation. Even stating the
proper results remains a challenge.

The need for well-founded and expressive distributed security
systems will grow with the speed of processors and networks, the
number of interconnected entities, and the complexity of applica-
tions. Our work shows how to design practical systems that meet
this need and demonstrates that such systems can be built and can
perform well.

Acknowledgements
Andrew Birrell, Morrie Gasser, Andy Goldstein, and Charlie

Kaufman were at the origin of many of the ideas discussed here.
Allan Heydon, Roy Levin, Tim Mann, Roger Needham, and Mike
Schroeder all suggested improvements in the presentation of this
paper.

33/35

Appendix
In this appendix we complete the proof of Theorem 1.
First we treat the cases of credentials with top-level signatures,

following the strategy described in Section 4.3.2.
• boot:

(1) Q(x) ⇒ T(x), since in this case both Q(x) and T(x) equal
x.key.

(2) S(x) ⇒ P(x), since S(x) is Q(x.k_as) and P(x) is P(x.k_as),
and Q(x.k_as) and P(x.k_as) are always equal.

• session:
(1) Since x.boot is embedded in x, the induction hypothesis

guarantees that M(x.boot) implies Q(x.boot) ⇒ P(x.boot),
that is, Q(x) ⇒ T(x). Further, M(x) implies M(x.boot) and
hence Q(x) ⇒ T(x).

(2) S(x) ⇒ P(x), since both S(x) and P(x) equal x.key.
• login:

(1) Since x.s.boot is embedded in x, the induction hypothesis
guarantees that M(x.s.boot) implies Q(x.s.boot) ⇒
P(x.s.boot). Similarly, M(x.s) implies Q(x.s) ⇒ P(x.s). By
definition Q(x.s) equals Q(x.s.boot), so M(x.s) implies
Q(x.s.boot) ⇒ P(x.s). Therefore, the conjunction of
M(x.s.boot) and M(x.s) implies Q(x.s.boot) ⇒
(P(x.s.boot) ∧ P(x.s)). Since Q(x.k_as) and P(x.k_as) are
equal and | is monotonic, this conjunction also implies
(Q(x.s.boot) Q(x.k_as)) ⇒ ((P(x.s.boot) ∧ P(x.s)) |
P(x.k_as)), that is, Q(x) ⇒ T(x). Finally, M(x) implies both
M(x.s.boot) and M(x.s), and hence Q(x) ⇒ T(x).

(2) P(x) is of the form B for P(x.k_as) and T(x) of the form B
P(x.k_as). Moreover, S(x) is Q(x.k_as), which equals
P(x.k_as).

• delegation:
(1) Since x.delegate and x.delegator are both embedded in

x, the induction hypothesis guarantees that M(x.delegate)
implies Q(x.delegate) ⇒ P(x.delegate). Similarly,
M(x.delegator) implies Q(x.delegator) ⇒
P(s.delegator). Since | is monotonic, the conjunction of
M(x.delegate) and M(x.delegator) implies
(Q(x.delegate) | Q(x.delegator)) ⇒ (P(x.delegate) |

34/35

P(x.delegator)) that is, Q(x) ⇒ T(x). Finally, M(x) implies
both M(x.delegate) and M(x.delegator), and hence Q(x)
⇒ T(x).

(2) P(x) is of the form B for P(x.delegator) and T(x) of the
form B | P(x.delegator). Moreover, S(x) is Q(x.delega-
tor) and we have proved Q(x.delegator) ⇒ P(x.delega-
tor) using the induction hypothesis.

• channel:
(1) Q(x) ⇒ T(x), since in this case both Q(x) and T(x) equal

x.prinID.
(2) Since x.prin is embedded in x, the induction hypothesis

guarantees that M(x.prin) implies Q(x.prin) ⇒ P(x.prin),
that is, S(x) ⇒ P(x). Further, M(x) implies M(x.prin) and
hence S(x) ⇒ P(x).

The remaining cases correspond to credentials with no top-
level signature. They are simpler:
• p_as: Since x.prin is embedded in x, the induction hypothesis

guarantees that M(x.prin) implies Q(x.prin) ⇒ P(x.prin).
Therefore, by the monotonicity of as, M(x.prin) implies
(Q(x.prin) as x.role) ⇒ (P(x.prin) as x.role), that is, Q(x)
⇒ P(x). Finally, M(x) implies M(x.prin) and hence Q(x) ⇒
P(x).

• k_as: There are two cases depending on whether x is simply a
primary or contains a role. In the former case, Q(x) ⇒ P(x),
since both Q(x) and P(x) equal x.key. In the latter case, x.k_as
is embedded in x, and hence the induction hypothesis guaran-
tees that M(x.k_as) implies Q(x.k_as) ⇒ P(x.k_as). Therefore,
by the monotonicity of as, M(x.k_as) implies (Q(x.prin) as
x.role) ⇒ (P(x.prin) as x.role), that is, Q(x) ⇒ P(x). Finally,
M(x) implies M(x.k_as) and hence Q(x) ⇒ P(x).

• primary: Q(x) ⇒ P(x), since in this case both Q(x) and P(x)
equal x.key.

References
[1] Abadi, M., Burrows, M., Kaufman, C., and Lampson, B. Authentication and

delegation with smart-cards. Science of Computer Programming 21, 2, Oct.
1993, 93-113.

35/35

[2] Abadi, M., Burrows, M., and Lampson, B., and Plotkin, G. A calculus for
access control in distributed systems. ACM Trans. Prog. Lang. and Sys. 15,
4, Oct. 1993, 706-734.

[3] Birrell, A., Hisgen, A., Jerian, C., Mann, T., and Swart, G. The Echo dis-
tributed file system. Report 111, Systems Research Center, Digital Equip-
ment Corp., Aug. 1993.

[4] CCITT. Information processing systems—Open systems interconnection—
The directory authentication framework. CCITT 1988 Recommendation
X.509.

[5] Eberle, H. and Thacker, C. A 1 Gbit/second GaAs DES chip. Proc. IEEE
Custom Integrated Circuit Conf., 1992, 19.7.1-19.7.4.

[6] Gasser, M., Goldstein, A., Kaufman, C., and Lampson, B. The Digital dis-
tributed system security architecture. Proc. 12th National Computer Secu-
rity Conference, NIST/NCSC, 1989, 305-319.

[7] Herbison, B. Low cost outboard cryptographic support for SILS and SP4.
Proc. 13th National Computer Security Conference, NIST/NCSC, 1990,
286-295.

[8] Knuth, D. The Art of Computer Programming, volume 2, second ed., Addi-
son-Wesley, 1981.

[9] Kohl, J. and Neuman, C. The Kerberos Network Authentication Service.
Internet RFC 1510, September 1993.

[10] Lampson, B., Abadi, M., Burrows, M., and Wobber, E. Authentication in
distributed systems: Theory and practice. ACM Trans. Comp. Sys. 10, 4,
Nov. 1992, 265-310.

[11] Lampson, B. Protection. ACM Operating Systems Review 8, 1, Jan. 1974,
18-24.

 [12] National Bureau of Standards. Data Encryption Standard. FIPS Pub.
46, Jan. 1977.

[13] Needham, R. Cryptography and Secure Channels. Distributed Systems, 2nd
ed., S. Mullender (editor), ACM Press, 1993, 231-241.

[14] Open Software Foundation Introduction to OSF DCE, Revision 1.0, Dec.
1992.

[15] Quisquater, J.-J., de Waleffe, D., and Bournas, J.-P. Corsair: a chip card
with fast RSA capability. Smart Card 2000, D. Chaum (editor), Elsevier,
1991, 199-206.

[16] Rivest, R., Shamir, A., and Adleman, L. A method for obtaining digital sig-
natures and public-key cryptosystems. Comm. ACM 21, 2, Feb. 1978, 120-
126.

[17] Rivest, R. The MD4 message digest algorithm. Advances in Cryptol-ogy:
Crypto ‘90, Springer-Verlag LNCS, 1991, 303-311.

[18] Schroeder, M. and Burrows, M. Performance of Firefly RPC. ACM Trans.
Comp. Sys. 8, 1, Feb. 1990, 1-17.

[19] Shand, M. and Vuillemin, J. Fast implementations of RSA cryptography,
11th Symposium on Computer Arithmetic, IEEE Computer Society, 1993.

[20] Thacker, C., Stewart, L., and Satterthwaite, E. Firefly: A multiprocessor
workstation. IEEE Trans. Computers 37, 8, Aug. 1988, 909-920.

