
Spring 2003

BRIDGE
The

Computing Meets the Physical World
Butler Lampson

Autonomous Robot Soccer Teams
Manuela Veloso

Flying with Animals
Part One: Linking Artificial Information-Processing
Machines and Living Information-Processing
Machines
Chris Diorio

Part Two: Interfacing Computer Electronics with
Biology
Thomas Daniel

Entering the Brain: New Tools for Precision
Surgery
Eric Grimson

Promoting the technological welfare of the nation by marshalling the
knowledge and insights of eminent members of the engineering profession.

L I N K I N G E N G I N E E R I N G A N D S O C I E T Y

Editorial
3 The Future of Computing

Wm. A. Wulf

Features
4 Computing Meets the Physical World

Butler Lampson
Rapid changes in computing will continue for the
foreseeable future.

8 Autonomous Robot Soccer Teams
Manuela Veloso
Soccer-playing robots could lead to completely autonomous
intelligent machines.

13 Flying with Animals
Part One: Linking Artificial Information-Processing
Machines and Living Information-Processing Machines
Chris Diorio
Neurobiologists want to understand how neurons control
animal behavior.

16 Flying with Animals
Part Two: Interfacing Computer Electronics with Biology
Thomas Daniel
Flight control in the hawkmoth is being analyzed by reverse
engineering.

19 Entering the Brain: New Tools for Precision Surgery
Eric Grimson
Noninvasive technology allows surgeons to see beneath the
surface of the brain.

NAE News and Notes
23 Class of 2003 Elected
27 NAE Newsmakers
29 Message from the Home Secretary
30 Foreign Secretary to Step Down
31 New Interns Join NAE
32 The News Media Could Be Our Weakest Link
34 National Academy of Engineering

2002 Private Contributions

(continued on next page)

The

L I N K I N G E N G I N E E R I N G A N D S O C I E T Y

BRIDGEVolume 33, Number 1 • Spring 2003

The field of computing has always changed rapidly, and it is still doing so.
The changes are driven, more than anything else, by Moore’s law. Many
people think the pace of change is slowing, or even that because we already
have the Internet and Google, there is not much left to do. I hope these
papers will convince you that this view is entirely wrong.

For the last 50 years, new applications of computers have followed a pat-
tern, as one manual activity after another has become automated. In the
1940s, it became possible to automate the calculation of ballistic trajectories
and in the 1950s of payrolls and nuclear weapon simulations. By the 1970s,
it was possible to create reasonably faithful representations of paper docu-
ments on computer screens. In the 1990s, we had the equivalent of a tele-
phone system for data, in the form of the Internet. In the next two decades
we will have embodied computers, machines that can interact with the phys-
ical world.

Hardware and Software

The factor that determines whether or not an activity can be automated is
whether the hardware is up to it. According to Moore’s law, the cost perfor-
mance of computers improves by a factor of 2 every 18 months, or a factor of
100 every 10 years; this applies to processing, storage, and communication.
Moore’s law is not a law of physics, but it has held roughly true for several

Butler Lampson is Distinguished

Engineer at Microsoft Corporation.

He is an NAE member.

Butler Lampson

Computing Meets
the Physical World

Rapid changes in computing will continue for

the foreseeable future.

5SPRING 2003

decades and seems likely to continue to hold true for at
least another decade. Indeed, today some things are
developing much faster than that. Storage capacity,
for example, is doubling every 9 months, not every
18 months. Wide-area communication bandwidth is
also improving faster than Moore’s law. Sometimes, with
speech recognition and web search engines, for example,
the cheaper cycles or bytes can be applied directly.
Often, however, by spending more hardware resources,
we can minimize programming effort; this is true for
applications that use web browsers or database systems.

Hardware is the raw material of computing, but soft-
ware gives it form. Our ability to write software is lim-
ited by complexity. People have been complaining
about the “software crisis” at least since the early 1960s,
and many people predicted in the 1960s and 1970s that
software development would grind to a halt because of
our inability to handle the increasing complexity of soft-
ware. Needless to say, this has not happened.

The software “crisis” will always be with us, however
(so it isn’t really a crisis). There are three reasons for this:

• As computing hardware becomes more powerful (at
the rate of Moore’s law), new applications quickly
become feasible, and they require new software. In
other branches of engineering the pace of change is
much slower.

• Although it is difficult to handle complexity in soft-
ware, it is much easier to handle it there than else-
where in a system. Therefore, it is good engineering
to move as much complexity as possible into software,
and engineers are busily doing so.

• External forces, such as physical laws, impose few lim-
its on the application of computers. Usually the only
limit is our inability to write programs. Because we
have no theory of software complexity, the only way
to find this limit is by trial and error, so we are bound
to overreach fairly often.

A lot of software today is built from truly gigantic
components: the operating system (Windows or Linux),
the database (Oracle or DB2), and the browser
(Netscape or Internet Explorer). These programs have
5 million to 40 million lines of code. By combining
them with a little bit of new code, we can build complex
applications very quickly. These new applications may
use a hundred or a thousand times the hardware
resources custom-built programs would use, but they can
be available in three months instead of five years.

Because we have plenty of hardware resources, this is a
good way to use them. It is programmers and time to
market that are in short supply, and customers care
much more about flexibility and total cost of ownership
than about the costs of raw hardware.

Another way to look at this is that today’s PC is about
10,000 times bigger and faster than the 1973 Xerox Alto,
which it otherwise closely resembles (Thacker, 1988). A
PC certainly doesn’t do 10,000 times as much, or do it
10,000 times faster. Where did these cycles go? Most of
them went into delivering lots of features quickly, which
means that first-class design had to be sacrificed. Soft-
ware developers traded reductions in hardware resources
for shorter time to market. A lot of cycles also went into
integration (for example, universal character sets and
typography, drag and drop functions, spreadsheets
embedded in text documents) and compatibility with
lots of different hardware and lots of old systems. Only a
factor of 10 went into faster responses.

Applications

There have been three broad waves of applications
for computers, about 25 years apart (Table 1). Cur-
rently, the communication wave is in full flood, and the
first signs of embodiment (relatively unrestrained inter-
actions with the physical world) are starting to appear.
Of course the earlier waves do not disappear, simulation
continues to be an important class of applications.

Usually a computer application begins as a fairly close
simulation of a manual function. After 10 or 20 years,
people begin to explore how the computer can do the
job in a radically different way. In business, this is called
“business process reengineering.” The computer no
longer does the same things as a bookkeeper; instead, it
makes it possible to close a company’s books two days
after a quarter ends. Boeing builds airplanes in a very

TABLE 1 Applications for Computers

Starting
Category Date Examples

Simulation 1960 Nuclear weapons, payroll,
games, virtual reality technology

Communication 1985 E-mail, online airline tickets,
(and storage) books, movies

Embodiment 2010 Vision, speech, robots,
smart dust

The
BRIDGE

different way because computers can model every
mechanical detail.

The earliest computers in the 1950s were used for sim-
ulation. Simulations of nuclear weapons, astrophysics,
protein folding, payrolls, project scheduling, games, and
virtual realities all fall comfortably into this category.

The communication wave became apparent outside
of research laboratories around 1980, and we are now in
the middle of it. Today, we have e-mail, search engines,
and the ability to buy airline tickets, books, movie tick-
ets, and almost anything else online. TerraServer, gives
us access to publicly available satellite telemetry of the
world. The Library of Congress’ catalog is online, and
you can buy any one of a million and a half books on
Amazon.com. Conduct a search on Google today, and
in half a second you can research a database of about
3 billion pages that is updated every two weeks—and
will soon be updated in real time.

The next great wave, which is just beginning, is
embodiment. Of course, computers have been used in
process-control systems for a long time, but that is com-
paratively uninteresting (albeit of considerable economic
importance). We are now seeing the first computer sys-
tems that can function effectively in the real world—
computerized cars, robots, smart dust. They are still in
their infancy, but the most interesting developments in
computing in the next 30 years will be in this domain.

A Boston company called iRobot has just introduced
what seems to be the first plausible domestic robot, a
vacuum cleaner that crawls around a room in a vaguely
spiral pattern, bouncing off of things (see it at
www.roombavac.com). The price is $199. In fact, with
only 14k bytes of ROM and 256 bytes (not kilobytes) of
RAM, it’s barely a computer.

What’s Next?

In a recent paper, Jim Gray (2003) countered the
widely held perception that most of the important
developments in computing have already happened and

that the future holds little more than refinements and
cost reductions. Gray predicted that the next 50 years
would be much more exciting than the last 50, both
intellectually and in practical applications. Here are
some of the challenges he raises.

Win the impersonation game. The classic Turing test asks
whether a person sitting at a keyboard and display can
distinguish between a conversation with a computer
and a conversation with another person. To win,
roughly speaking, a computer must able to read, write,
think, and understand as well as a person. The com-
puter will need some facility with natural language and
a good deal of common sense. Anyone who has tried
using natural language to interact with a computer
knows that we still have a long way to go; and we don’t
even know how far.

Hear, speak, and see as well as a person. Meeting this
challenge will be much more difficult. Today’s best
text-to-speech systems, given enough data, can do a
pretty good job of simulating a person’s voice, although
they still have trouble with intonation. In a quiet
room, you can dictate to a computer a little faster than
a person can type, at least if, like me, the person types
fairly fast but makes a lot of errors. If there is any back-
ground noise, however, the computer does much worse
than a person. To see as well as a person is even more
difficult. People first learned to parse two-dimensional
images on the retina and construct a model of a three-
dimensional world so they could detect tigers in the
jungle and swing from tree to tree. Today’s best systems
do a fair job of recognizing buildings on a city street,
but not in real time.

Answer questions about a text corpus as well as a human
expert. Then add sounds and images. A computer can’t
yet read and absorb Google’s 3 billion web pages and
then answer questions about them in a sensible way. It
can find documents where words occur or documents
with a lot of other documents pointing to them, but it
can’t understand content.

Be somewhere else as observer (tele-past), participant (tele-
present). Videoconferencing represents the first feeble
step in this direction. Can virtual presence equal real
presence? We don’t really understand what makes real
presence good, so this is an open question—one that
has implications for medicine, transportation, educa-
tion, and social relations. Remote surgery is just one
valuable, but extremely demanding application.

6

The next great wave of
computer applications,

embodiment, is just beginning.

Devise a system architecture that scales up by 106. Com-
puter systems on the Internet often serve millions of
users, sometimes hundreds of millions, and the demand
can change rapidly. After September 11, for example,
the main web news sites collapsed because traffic was
10 to 100 times higher than normal. In addition, the
same architecture must be used across a wide range of
systems to ensure compatibility and consistency. The
Internet has met this challenge for transporting data,
but storage, processing, and coordination over such a
range of sizes are problems yet to be solved.

Given a specification, build a system that implements it. Do
it better than a team of programmers. Writing an adequate
specification is a daunting task, as anyone who has tried
it knows. Automatically building a system to imple-
ment it means converting it into a form that can be
executed reasonably efficiently. Most teams of pro-
grammers don’t do this terribly well, so if we can create
a system that can do it at all, we have a good shot at
doing it better than a team of programmers. Today, we
can do it in very limited domains; the canonical ex-
amples are certain spreadsheet and database query
applications, in which the specification and the program
are almost indistinguishable.

Build a system used by millions that can be administered by
half a person. The operating costs of most computer sys-
tems dwarf their hardware costs. Configuration, back-
up, repair, expansion, and updates require a lot of
human attention. There is no reason in principle why
this work can’t be done by machines, except for the
small effort required to set policy (e.g., telling the sys-
tem who the authorized users are and which tasks are
most important).

Common Themes

Three themes common to these challenges are central
to the way computing will develop in the next few years
and decades: information, uncertainty, and ubiquity.

Information. Very soon it will be technically feasible to
put everything we have online and remember it forever.

But making the most of this capability will require that
the information be meaningful to the machine in some
sense. Even though today’s web is feeble by this stan-
dard, it has already had a tremendous impact on our
lives. Machines that can answer questions about the
information they store and relate different pieces of
information to each other would be able to do much
more for us.

Uncertainty. Interacting with the physical world neces-
sarily involves dealing with uncertainty. The computer
needs a good model of what can happen in the part of
the world it is interacting with, and boundaries that tell
it when the model no longer applies. This is often called
common sense, and it is essential not only for sensors
and robots, but also for natural user interfaces, such as
speech, writing, and language. For each of these, the
machine often has to guess meaning; it needs to guess
well, and the user needs to know what to do when the
guess is wrong.

Ubiquity. Computers are getting so cheap and so small
that we can begin to think about having a computer on
every fingernail, a computer inside every manufactured
physical object. We could have guardian angels, for
example, that monitor the state of our health and safety,
call for help when it’s needed, and so forth. Every man-
ufactured object in the world could respond to us and
interact with its fellows. How can all of this be done
reliably and conveniently? How can people tell all of
these computers what to do?

These are just a few examples of the opportunities
before us. The papers that follow focus on physical ways
computers might interact with the world.

References

Gray, J. 2003. What next?: a dozen information-technology
research goals. Journal of the ACM 50(1): 41–47.

Thacker, C. 1988. Personal Distributed Computing: The
Alto and Ethernet Hardware. Pp. 267–290 in A History of
Personal Workstations, edited by A. Goldberg. Reading,
Mass.: Addison-Wesley.

7SPRING 2003

