
Lampson: Turing lecture February 17, 1993 1

Principles for

Computer System Design

10 years ago: Hints for Computer System Design

Not that much learned since then—disappointing

Instead of standing on each other’s shoulders, we stand on each

other’s toes. (Hamming)

One new thing: How to build systems more precisely

If you think systems are expensive, try chaos.

Lampson: Turing lecture February 17, 1993 2

Collaborators

Bob Taylor

Chuck Thacker Workstations: Alto, Dorado, Firefly

 Networks: AN1, AN2

Charles Simonyi Bravo WYSIWYG editor

Nancy Lynch Reliable messages

Howard Sturgis Transactions

Martin Abadi Security

Mike Burrows

Morrie Gasser

Andy Goldstein

Charlie Kaufman

Ted Wobber

Lampson: Turing lecture February 17, 1993 3

From Interfaces to Specifications

Make modularity precise

 Divide and conquer (Roman motto)

Design

Correctness

Documentation

Do it recursively

 Any idea is better when made recursive (Randell)

Refinement: One man’s implementation is another man’s spec.

 (adapted from Perlis)

Composition: Use actions from one spec in another.

Lampson: Turing lecture February 17, 1993 4

Specifying a System with State

A safety property: nothing bad ever happens

Defined by a state machine:

state: a set of values, usually divided into named variables

actions: named changes in the state

A liveness property: something good eventually happens

These define behavior: all the possible sequence of actions

Examples of systems with state:

Data abstractions

Concurrent systems

Distributed systems

You can’t observe the actual state of the system from outside.

All you can see is the results of actions.

Lampson: Turing lecture February 17, 1993 5

Editable Formatted Text

text: sequence of (Char, Property)

get(2) returns (‘e’, (Times-Roman, ...))

replace(3, 5, 2, 3,

look(0, 5, italic := true)

a p p l e H e l p)

 H e l l o

 H e l l o

 H e l l o

State

Actions

This interface was used in the Bravo editor.

The implementation was about 20k lines of code.

Lampson: Turing lecture February 17, 1993 6

How to Write a Spec

Figure out what the state is

Choose it to make the spec clear, not to match the code.

Describe the actions

What they do to the state

What they return

Helpful hints

Notation is important; it helps you to think about what’s going on.

Invent a suitable vocabulary.

Fewer actions are better. Less is more.

More non-determinism is better; it allows more implementations.

I’m sorry I wrote you such a long letter; I didn’t have time to

write a short one. (Pascal)

Lampson: Turing lecture February 17, 1993 7

Reliable Messages

status = ?

R
e
c
e
i
v
e
r

S
e
n
d
e
r crash

lose(B)
lose(D)

recover

put(m)

getAck(a)
q =

get(m)

D C B

get(B)
get(C)

get(D)

status = OK

q =

status = lost

q = C

Lampson: Turing lecture February 17, 1993 8

Spec for Reliable Messages

q : sequence[M] := < >

status : {OK, lost, ?} := lost

recs/r : Boolean := false (short for ‘recovering’)

Name Guard Effect Name Guard Effect

**put(m) append m to q,

status := ?

*get(m) m first on q remove head of q,

if q = <>, status = ?

*getAck(a) status = a status := lost then status := OK

lose recs or

recr

delete some element from q;

 if it’s the last then status := lost,

or status := lost

Lampson: Turing lecture February 17, 1993 9

What “Implements” Means?

Divide actions into external and internal.

Y implements X if

every external behavior of Y is an external behavior of X, and

Y’s liveness property implies X’s liveness property.

This expresses the idea that Y implements X if

you can’t tell Y apart from X by looking only at the external actions.

Lampson: Turing lecture February 17, 1993 10

Proving that Y implements X
Define an abstraction function f from the state of Y to the state of X.

Show that Y simulates X:

1) f maps initial states of Y to initial states of X.

2) For each Y-action and each state y

there is a sequence of X-actions that is the same externally,

such that the diagram commutes.

f(y)

y y'

f(y')

Y-action

X-actions

f f

This always works!

Lampson: Turing lecture February 17, 1993 11

Delayed-Decision Spec: Example

drop(B)

drop(D)

status = ?

S
e
n
d
e
r crash

mark(B)

mark(D)

recover

put(m)

getAck(a)
q =

get(m)

D C B

status = lost

q =

status = ? #

q = D# C B#C

R
e
c
e
i
v
e
r

The implementer wants the spec as non-deterministic as possible,

 to give him more freedom and make it easier to show correctness.

Lampson: Turing lecture February 17, 1993 12

A Generic Protocol G (1)

lastsput(m)

R
e
c
e
i
v
e
r

S
e
n
d
e
r

sr

3
A

msg

Sender

actions state

Receiver

state actions

unreliable
channels

5

B

B 5

Lampson: Turing lecture February 17, 1993 13

A Generic Protocol G (2)

5
rs

4
lost

lastr
get(m)lastsput(m)

R
e
c
e
i
v
e
r

S
e
n
d
e
r

sr

3
A

msg

Sender

actions state

Receiver

state actions

unreliable
channels

5

B

OK

B 5 5
B

Lampson: Turing lecture February 17, 1993 14

A Generic Protocol G (3)

5
rs

4
lost

lastr
get(m)lastsput(m)

getAck(a)

R
e
c
e
i
v
e
r

S
e
n
d
e
r

sr

3
A

msg

Sender

actions state

Receiver

state actions

unreliable
channels

5

B

OK

5 5

OK

Lampson: Turing lecture February 17, 1993 15

A Generic Protocol G (4)

newr

gs gr

lasts

growr(i)grows(i)

choose(i) R
e
c
e
i
v
e
r

S
e
n
d
e
r

sr

3
A

recs recr

Sender

actions state

Receiver

state actions

unreliable
channels

5

B

53

msg

Lampson: Turing lecture February 17, 1993 16

G at Work
R
e
c
e
i
v
e
r

S
e
n
d
e
r

gs =

lasts =

msg =

sr =

rs =

gr =

lastr =

mark =

3

C

2

+

q = C status = ?

C
3

3

C

3

+

q = status = OK

3
OK

3 4 5

nil 2

+

q = C# status = lost

3
C

3

C

nil

#

q = C# status = ? #

3
C

get(C) crashs

crashr; recover

nil

lost

shrinkr(3)
(after strikeout)

(before strikeout)

4 4 5 3 4 54

4 3 4 5

Lampson: Turing lecture February 17, 1993 17

Abstraction Function for G

cur-q = <msg> if msg ≠ nil and (lasts = nil or lasts gr)

< > otherwise

old-q = the messages in sr with i’s that are good and not = lasts

old-q + cur-q

? if cur-q ≠ < >
OK if lasts = lastr ≠ nil
lost if lasts (gr {lastr}) or lasts = nil

 recs/r

Lampson: Turing lecture February 17, 1993 18

The Handshake Protocol H (1)

j-new

js

sr

needI
12

put(m)
R
e
c
e
i
v
e
r

S
e
n
d
e
r

B

12

Lampson: Turing lecture February 17, 1993 19

The Handshake Protocol H (2)

j-new

js

ir

assignI(j, i)
rs

12
5

sr

needI
12

put(m)

jr

R
e
c
e
i
v
e
r

S
e
n
d
e
r

newr

12
4

gs

B

12 12
12 5

5 gr

Lampson: Turing lecture February 17, 1993 20

The Handshake Protocol H (3)

js

ir

choose(i)

rs
12
5

sr

needI
12

put(m)

jr

lasts

R
e
c
e
i
v
e
r

S
e
n
d
e
r

12
4

B

12 12

5

5

5 5
B

gs gr

Lampson: Turing lecture February 17, 1993 21

The Handshake Protocol H (4)

ir

lastr

get(m)lasts

getAck(a)

R
e
c
e
i
v
e
r

S
e
n
d
e
r

sr

done
5

5

5 5
B

5

5
OK

gr

Lampson: Turing lecture February 17, 1993 22

The Handshake Protocol H (5)

lastr

R
e
c
e
i
v
e
r

S
e
n
d
e
r

sr

done
5 cleanup

5

Lampson: Turing lecture February 17, 1993 23

The Handshake Protocol H (6)

j-new

js

ir

assignI(j, i)

choose(i)

rs
12
5

sr

needI
12

put(m)

jr

lastr

get(m)lasts

getAck(a)

R
e
c
e
i
v
e
r

S
e
n
d
e
r

sr

done
5 cleanup

newr

12
4

gs gr

5
B

5
OK

Lampson: Turing lecture February 17, 1993 24

Abstraction Function for H
G H

ggss the i’s with (js, i) in rs

ggrr {ir} – {nil}

ssrr and rrss the (I, M) and (I, A) messages in sr and rs

news/r, lasts/r, and msg are the same in G and H

growr(i) receiver sets ir to an identifier from newr

grows(i) receiver sends (js, i)

shrinks(i) channel rs loses the last copy of (js, i)

shrinkr(i) receiver gets (ir, done)

An efficient program is an exercise in logical brinksmanship.

 (Dijkstra)

Lampson: Turing lecture February 17, 1993 25

Reliable Messages: Summary

Ideas

Identifiers on messages

Sets of good identifiers, sender’s receiver’s

Cleanup

The spec is simple.

Implementations are subtle because of crashes.

The abstraction functions reveal their secrets.

The subtlety can be factored in a precise way.

Lampson: Turing lecture February 17, 1993 26

Atomic Actions

S : State

Name Guard Effect

do(a):Val (S, val) := a(S)

5 5

X Y

do(x := x–1)

4 5

do(y := y+1)

4 6

Lampson: Turing lecture February 17, 1993 27

A distributed system is a system in which I can’t get my work done

because a computer has failed that I’ve never even heard of.

 (Lamport)

Lampson: Turing lecture February 17, 1993 28

Transactions: One Action at a Time

S , s : State

Name Guard Effect

do(a):Val (s, val) := a(s)

X Y x y

5 5 5 5

crash before commit

5 5 4 6

commit

4 6 4 6

5 5 5 5

do(x := x–1); do(y := y+1)

Lampson: Turing lecture February 17, 1993 29

commit S := s

crash s := S

Lampson: Turing lecture February 17, 1993 30

Server Failures

S , s : State

 : {nil, run} := nil

Name Guard Effect

begin = nil := run

X Y x y

5 5 5 5

crash before commit

5 5 4 6

commit

4 6 4 6

do(x := x–1); do(y := y+1)

 nil

 run

 nil

 nil

5 5 5 5

Lampson: Turing lecture February 17, 1993 31

do(a):Va

l

 = run (s, val) := a(s)

commit = run S := s, := nil

crash s := S, := nil

Note that we clean up the auxiliary state .

Lampson: Turing lecture February 17, 1993 32

Incremental State Changes: Logs (1)

S , s : State SS = S + L

L , l : SEQ Action := < > ss,, = s,

 : {nil, run} := nil

5 5 5 5

X Y x y

x := 4*
y := 6*

Logs

 nil

begin; do(x:=x–1); do(y:=y+1)

5 5 4 6 run

commit

x := 4*
y := 6*

5 5 4 6 nil

crash before commit

5 5 5 5 nil

Lampson: Turing lecture February 17, 1993 33

Name Guard Effect

begin = nil := run

do(a):Val = run (s, val) := a(s), l +:= a

commit = run L := l, := nil

. . .

crash l := L, s := S+L, nil

Lampson: Turing lecture February 17, 1993 34

Incremental State Changes: Logs (2)

S , s : State SS = S + L

L , l : SEQ Action ss,, = s,

 : {nil, run}

X Y x y Logs

x := 4*
y := 6*

5 5 4 6 nil

apply(x := 4)

x := 4
y := 6*

4 5 " nil

apply(y := 6)

x := 4
y := 6

4 6 " nil

cleanLog

4 6 " nil

crash after apply(x:=4)

x := 4*
y := 6*

4 5 " nil

Lampson: Turing lecture February 17, 1993 35

Name Guard Effect

begin, do, and commit as before

apply(a) a = head(l) S := S + a, l := tail(l)

cleanLog L in S L := < >

crash l := L, s := S+L, nil

Lampson: Turing lecture February 17, 1993 36

Incremental Log Changes

S , s : State LL = L if = com else < >

L , l : SEQ Action = if ≠ com else nil

 , : {nil, run*, commit}

 X Y x y

x := 4*
y := 6*

Logs

5 5 4 6 nil run

flush; commit

x := 4*
y := 6*

5 5 " com com

apply(x := 4); apply(y := 6)

x := 4
y := 6

4 6 "

cleanLog; cleanup

4 6 "

com com

crash after flush

x := 4*
y := 6*

4 5 "

nil nil

nil nil

Lampson: Turing lecture February 17, 1993 37

Name Guard Effect

begin and do as before

flush = run copy some of l to L

commit = run, L = l := := commit

apply(a) = commit, " "

cleanLog head(L) in S

or = nil

L := tail(L)

cleanup L = < > := := nil

crash l := < > if = nil else L;

s := S + l,

Lampson: Turing lecture February 17, 1993 38

Distributed State and Log

Si , si : State = run if all i = run

Li , li : SEQ Action com if any i = com

i , i : {nil, run*, commit} and any Li ≠ < >

S, L, are the products of the Si, Li, i nil otherwise

Name Guard Effect

begin and do as before

flushi i = run copy some of li to Li

preparei i = run, Li=li i := run

commit = run, L = l some i :=i :=commit

cleanLog and cleanup as before

crashi li := < >if i = nil else Li;

si := Si + li, i i

Lampson: Turing lecture February 17, 1993 39

High Availability

The = commit is a possible single point of failure.

With the usual two-phase commit (2PC) this is indeed a

limitation on availability.

If data is replicated, an unreplicated commit is a weakness.

Deal with this by using a highly available consensus algorithm

for .

Lamport’s Paxos algorithm is the best currently known.

Lampson: Turing lecture February 17, 1993 40

Transactions: Summary

Ideas

Logs

Commit records

Stable writes at critical points: prepare and commit

Lazy cleanup

The spec is simple.

Implementations are subtle because of crashes.

The abstraction functions reveal their secrets.

The subtlety can be added one step at a time.

Lampson: Turing lecture February 17, 1993 41

How to Write a Spec

Figure out what the state is

Choose it to make the spec clear, not to match the code.

Describe the actions

What they do to the state

What they return

Helpful hints

Notation is important; it helps you to think about what’s going on.

Invent a suitable vocabulary.

Fewer actions are better. Less is more.

More non-determinism is better; it allows more implementations.

I’m sorry I wrote you such a long letter; I didn’t have time to

write a short one. (Pascal)

Lampson: Turing lecture February 17, 1993 42

Security: The Access Control Model

Guards control access to valued resources.

Reference

monitor
Object

Do

operationPrincipal

GuardRequestSource Resource

Rules control the operations allowed

for each principal and object.

Principal may

do

Operation

on

Object

Taylor Read File “Raises”

Jones Pay invoice 4325 Account Q34

Lampson: Turing lecture February 17, 1993 43

Schwarzkopf Fire three rounds Bow gun

Lampson: Turing lecture February 17, 1993 44

A Distributed System

Workstation

Operating

system

Excel

application

Server

Operating

system

NFS Server

request

Lampson: Turing lecture February 17, 1993 45

Principals

Authentication: Who sent a message?

Authorization: Who is trusted?

Principal — abstraction of "who":

People Lampson, Taylor

Machines VaxSN12648, Jumbo

Services SRC-NFS, X-server

Groups SRC, DEC-Employees

Channels Key #7438

Lampson: Turing lecture February 17, 1993 46

Theory of Principals

Principal says statement P says s

Lampson says “read /SRC/Lampson/foo”

SRC-CA says “Lampson’s key is #7438”

Principal A speaks for B A => B

If A says something, B says it too. So A is stronger than B.

A secure channel:

says things directly C says s

If P is the only sender on C C => P

Examples

Lampson => SRC

Key #7438 => Lampson

Lampson: Turing lecture February 17, 1993 47

Handing Off Authority

Handoff rule: If A says B => A then B => A

Reasonable if A is competent and accessible.

Examples:

SRC says Lampson => SRC

Node key says Channel key => Node key

Any problem in computer science can be solved

with another level of indirection. (Wheeler).

Lampson: Turing lecture February 17, 1993 48

Authenticating to the Server

Workstation

Logged in user

Excel

Server

NFS

network

channel

WS14 and bwl

Kl

–1

Kws
–1

pr
WS14 as Excel
and bwl

bwl

file foo

(SRC-node as Excel) and bwl
may read

Kbwl

-1

Kca says
Kws =>WS14

SRC says WS14 => SRC-node

WS14

Kbwl => bwl
Kca says

Lampson: Turing lecture February 17, 1993 49

Access Control

Checking access:

Given a request Q says read O

 an ACL P may read O

Check that Q speaks for P Q => P

Auditing

Each step is justified by

a signed statement, or

a rule

Lampson: Turing lecture February 17, 1993 50

Authenticating a Channel

Authentication — who can send on a channel.

C => P; C is the channel, P the sender.

To get new C => P facts, must trust some principal,

a certification authority, to tell them to you.

Simplest: trust Kca to authenticate any name:

Kca => Anybody

Then CA can authenticate channels:

Kca says Kws => WS

Kca says Kbwl => bwl

Lampson: Turing lecture February 17, 1993 51

Authenticated Channels: Example

Workstation

Logged in user

Excel

Server

NFS

network

channel

WS14 and bwl

Kl

–1

Kws

–1

pr
WS14 as Excel
and bwl

bwl

file foo

(SRC-node as Excel) and bwl
may read

Kbwl

-1

Kca says
Kws => WS14

SRC says WS14 => SRC-node

WS14

Kbwl => bwl
Kca says

Lampson: Turing lecture February 17, 1993 52

Groups and Group Credentials

Defining groups: A group is a principal; its members speak for it.

Lampson => SRC

Taylor => SRC

. . .

Proving group membership: Use certificates.

Ksrc says Lampson => SRC

Kca says Ksrc => SRC

Lampson: Turing lecture February 17, 1993 53

Authenticating a Group

Workstation

Logged in user

Excel

Server

NFS

network

channel

WS14 and bwl

Kl

–1

Kws
–1

pr
WS14 as Excel
and bwl

bwl

file foo

(SRC-node as Excel) and bwl
may read

Kbwl

-1

Kca says
Kws => WS14

SRC says WS14 => SRC-node

WS14

Kbwl => bwl
Kca says

Lampson: Turing lecture February 17, 1993 54

Security: Summary

Ideas

Principals

Channels as principals

“Speaks for” relation

Handoff of authority

Give precise rules.

Apply them to cover many cases.

Lampson: Turing lecture February 17, 1993 55

References

Hints Lampson, Hints for Computer System Design.

IEEE Software, Jan. 1984.

Specifications Lamport, A simple approach to specifying

concurrent systems. Communications of the ACM,

Jan. 1989.

Reliable messages in Mullender, ed., Distributed Systems, Addison-

Wesley, 1993 (summer)

Transactions Gray and Reuter, Transaction Processing:

Concepts and Techniques. Morgan Kaufman,

1993.

Security Lampson, Abadi, Burrows, and Wobber,

Authentication in distributed systems: Theory and

Lampson: Turing lecture February 17, 1993 56

practice. ACM Transactions on Computer Systems,

Nov. 1992.

Lampson: Turing lecture February 17, 1993 57

Collaborators
Charles Simonyi Bravo: WYSIWYG editor

Bob Sproull Alto operating system

 Dover: laser printer

 Interpress: page description language

Mel Pirtle 940 project, Berkeley Computer Corp.

Peter Deutsch 940 operating system

 QSPL: system programming language

Chuck Geschke Mesa: system programming language

Jim Mitchell

Ed Satterthwaite

Jim Horning Euclid: verifiable programming language

Ron Rider Ears: laser printer

Gary Starkweather

Severo Ornstein Dover: laser printer

Lampson: Turing lecture February 17, 1993 58

Collaborators
Roy Levin Wildflower: Star workstation prototype

 Vesta: software configuration

Andrew Birrell, Roger Needham, Mike Schroeder

 Global name service and authentication

Eric Schmidt System models: software configuration

Rod Burstall Pebble: polymorphic typed language

