Accountability and Freedom

Butler Lampson Microsoft September 26, 2005

Real-World Security

- It's about risk, locks, and deterrence.
 - Risk management: cost of security < expected loss
 Perfect security costs way too much
 - Locks good enough that bad guys break in rarely
 - Bad guys get caught and punished enough to be deterred, so police / courts must be good enough.
 - Can recover from damage at an acceptable cost.
- Internet security similar, but little accountability

Can't identify the bad guys, so can't deter them

How Much Security

- Security is costly—buy only what you need

 You pay mainly in inconvenience
 If there's no punishment, you pay a lot
- People do behave this way
- We don't *tell* them this—a big mistake
- The best is the enemy of the good – Perfect security is the worst enemy of real security

Feasible security

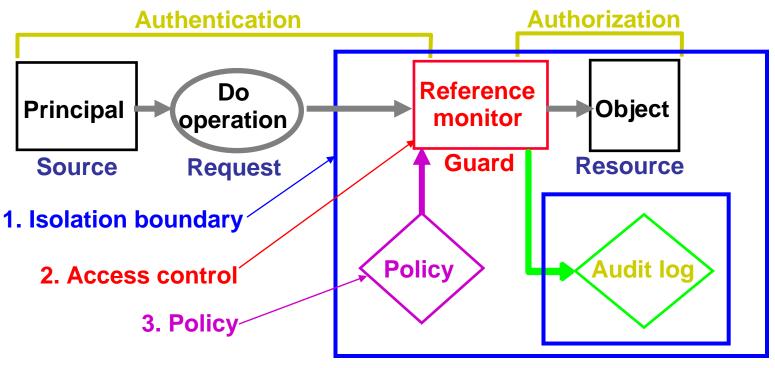
- Costs less than the value it protects
- Simple enough for users to manage
- Simple enough for vendors to implement

Causes of Security Problems

- Exploitable bugs
- Bad configuration
 - TCB: Everything that security depends on Hardware, software, and configuration
 - Does formal policy say what I mean?
 - Can I understand it? Can I manage it?
- Why least privilege doesn't work

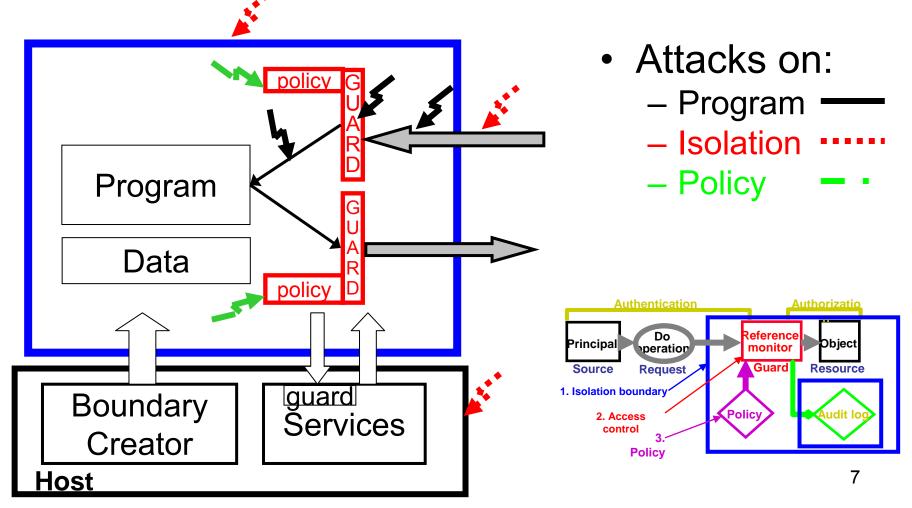
 Too complicated, can't manage it

The unavoidable price of reliability is simplicity —Hoare

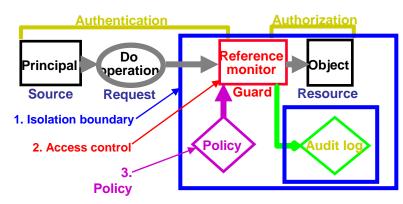

Defensive strategies

- Locks: Control the bad guys
 - Coarse: Isolate—keep everybody out
 - Medium:Exclude-keep the bad guys out
 - Fine: Restrict—Keep them from doing damage
 Recover—Undo the damage
- Deterrence: Catch bad guys, punish them

Auditing, police, courts or other penalties


The Access Control Model

- 1. Isolation Boundary to prevent attacks outside access-controlled channels
- 2. Access Control for channel traffic
- 3. Policy management


Isolation

- I am isolated if anything that goes wrong is my fault
 - Actually, my program's fault

Access Control Mechanisms: The Gold Standard

- Authenticate principals: Who made a request
 - Mainly people, but also channels, servers, programs (encryption implements channels, so key is a principal)
- Authorize access: Who is trusted with a resource
 - Group principals or resources, to simplify management
 Can define by a property, e.g. "type-safe" or "safe for scripting"
- Audit: Who did what when?
- Lock = Authenticate + Authorize
- *Deter* = *Authenticate* + *Audit*

Making Isolation Work

- Isolation is imperfect: Can't get rid of bugs
 - TCB = 10-50 M lines of code
 - Customers want features more than correctness
- Instead, don't tickle them.
- How? Reject bad inputs
 - Code: don't run or restrict severely
 - Communication: reject or restrict severely
 - Especially web sites
 - Data: don't send; don't accept if complex

Accountability

- Can't identify bad guys, so can't deter them
- Fix? End nodes enforce accountability
 - Refuse messages that aren't accountable enough
 - or strongly isolate those messages
 - Senders are accountable if you can punish them
 - -All trust is local
- Need an ecosystem for
 - Senders becoming accountable
 - Receivers demanding accountability
 - Third party intermediaries
- To stop DDOS attacks, ISPs must play

Enforcing Accountability

- Not being accountable enough means end nodes will reject inputs
 - Application execution is restricted or prohibited
 - Communication is restricted or prohibited
 - Information is not shared or accepted
 - Access to devices or networks is restricted or prohibited

For Accountability To Work

- Senders must be able to make themselves accountable
 - This means pledging something of value
 - Friendship
 - Reputation
 - Money
 - ...
- Receivers must be able to check accountability
 - Specify what is accountable enough
 - Verify sender's evidence of accountability

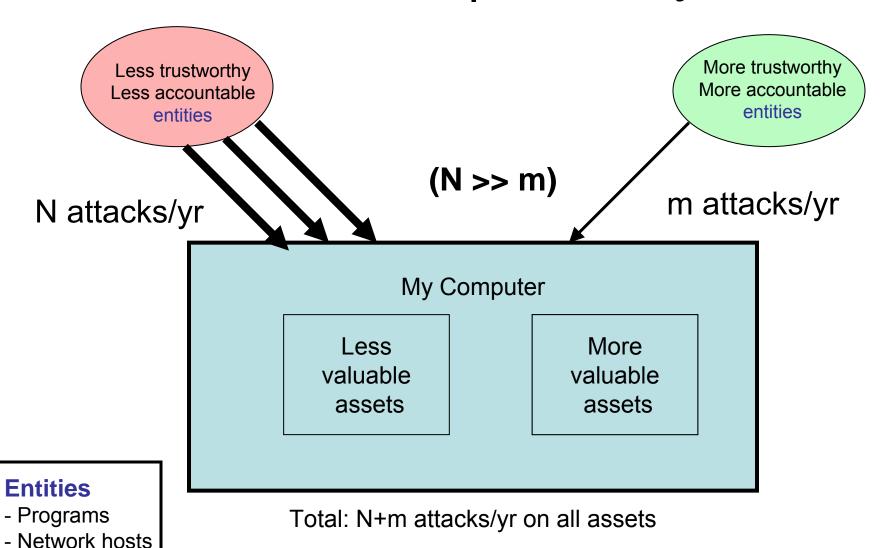
Accountability vs. Access Control

- "In principle" there is no difference but
- Accountability is about punishment, not locks

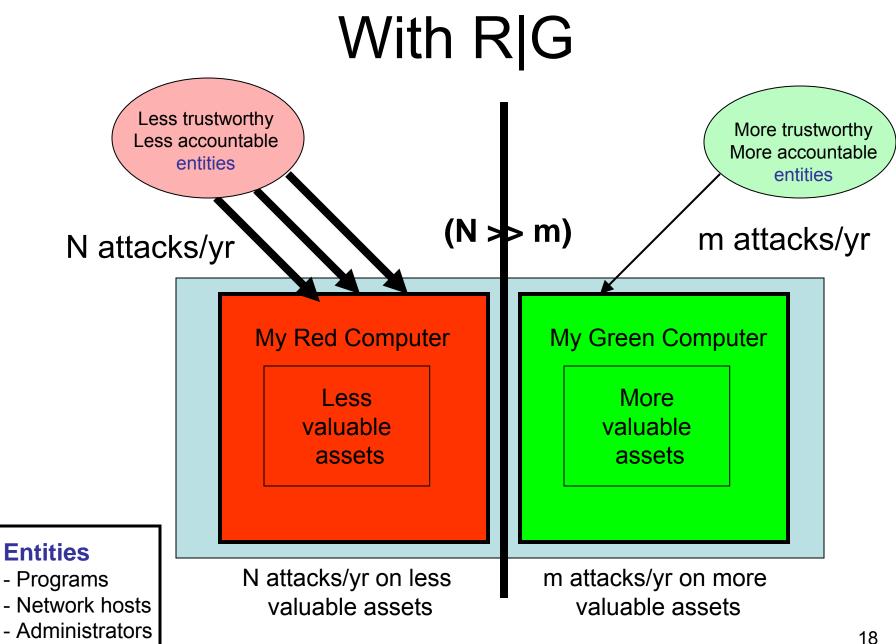
 Hence audit is critical
- Accountability is very coarse-grained

The Accountability Ecosystem

- Identity, reputation, and indirection services
- Mechanisms to establish trust relationships
 Person to person and person to organization
- A flexible, simple user model for identity
- Stronger user authentication
 - Smart card, cell phone, biometrics
- Application identity: signing, reputation

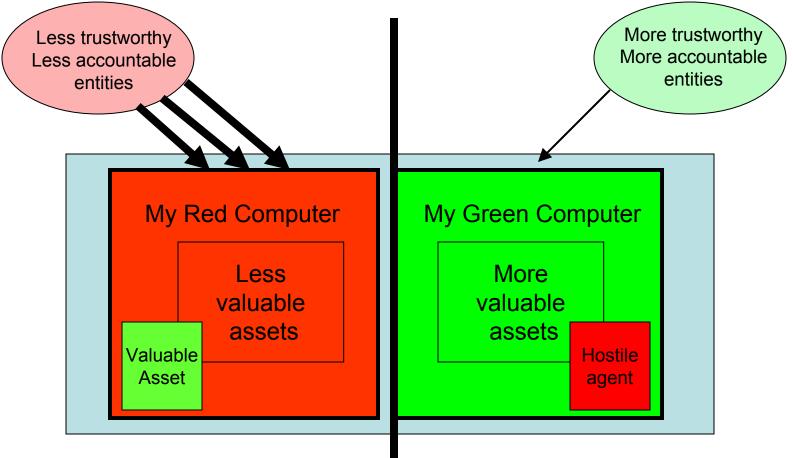

Accountable Internet Access

- Just enough to block DDoS attacks
- Need ISPs to play. Why should they?
 - Servers demand it; clients don't get locked out
 - Regulation?
- A server asks its ISP to block some IP addresses
- ISPs propagate such requests to peers or clients
 Probably must be based on IP address
 - Perhaps some signing scheme to traverse unreliable intermediaries?
- High priority packets can get through


Accountability vs. Freedom

- Partition world into two parts:
 - Green Safer/accountable
 - Red Less safe/unaccountable
- Two aspects, mostly orthogonal
 - User Experience
 - Isolation mechanism
 - Separate hardware with air gap
 - VM
 - Process isolation

Without R|G: Today



- Administrators

Must Get Configuration Right

- Keep valuable stuff out of red
- Keep hostile agents out of green

Why R|G?

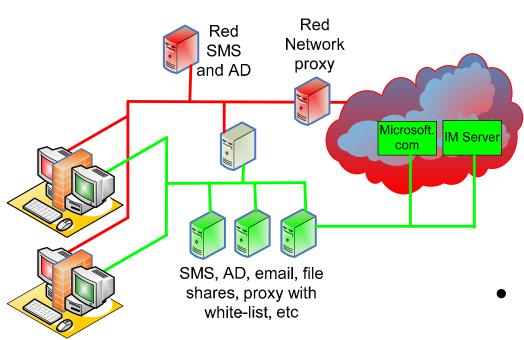
- Problems:
 - Any OS will always be exploitable
 - The richer the OS, the more bugs
 - Need internet access to get work done, have fun
 - The internet is full of bad guys
- Solution: Isolated work environments:
 - Green: important assets, only talk to good guys
 - Don't tickle the bugs, by restricting inputs
 - Red: less important assets, talk to anybody
 - Blow away broken systems
- Good guys: more trustworthy / accountable
 Bad guys: less trustworthy or less accountable

Configuring Green

- Green = locked down = only whitelist inputs
- Requires professional management
 - Few users can make these decisions
 - Avoid "click OK to proceed"
- To escape, use Red
 - Today almost all machines are Red

R|G User Model Dilemma

- People don't want complete isolation
 - They want to:
 - Cut/paste, drag/drop
 - Share parts of the file system
 - Share the screen
 - Administer one machine, not multiple
 - ...
- But more integration can weaken isolation
 - Add bugs
 - Compromise security


Data Transfer

- Mediates data transfer between machines
 Drag / drop, Cut / paste, Shared folders
- Problems
 - Red \rightarrow Green : Malware entering
 - Green \rightarrow Red : Information leaking
- Possible policy
 - Allowed transfers (configurable). Examples:
 - No transfer of ".exe" from R to G
 - Only transfer ASCII text from R to G
 - Non-spoofable user intent; warning dialogs
 - Auditing
 - Synchronous virus checker; third party hooks, ...

Where Should Email/IM Run?

- As productivity applications, they must be well integrated in the work environment (green)
- Threats—A tunnel from the bad guys
 - Executable attachments
 - Exploits of complicated data formats
- Choices
 - Run two copies, one in Green and one in Red
 - Run in Green and mitigate threats
 - Green platform does not execute arbitrary programs
 - Green apps are conservative in the file formats they accept
 - Route messages to appropriate machine

R|G and Enterprise Networks

- Red and green networks are defined as today:
 - IPSEC
 - Guest firewall
 - Proxy settings

- ..

- The VMM can act as a router
 - E.g. red only talks to the proxy

Summary

- Security is about risk management

 Cost of security < expected loss
- Security relies on determined more than locks

 Determined requires the threat of punishment
 This requires accountability
- Accountability needs an ecosystem
 - Senders becoming accountable
 - Receivers verifying accountability
- Accountability limits freedom
 - Beat this by partitioning: red | green
 - Don't tickle bugs in green, dispose of red