
1  

Formal Methods for Design: 
How To Understand Your System  

Before (Or After) You Build It 

 
 

Butler Lampson 
blampson@microsoft.com 

 
12 November 2002 



2  

My Religion 

Write specs as models, not axioms 
Write down the state 
Give the actions, both external and internal  

“Implements” is refinement (external behavior a subset) 
Safety proofs by abstraction function and simulation 

This is complete: If Y implements X, there’s an 
abstraction function under which Y simulates X 
May need to add history and prophecy variables 

Liveness isn’t important—time bounds are safety 
Leave encoding and data structures as late as possible 
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Proving that Y implements X 

Define an abstraction function f from Y’s state to X’s state. 
Show that Y simulates X: For each Y-action and each state y  
there is a sequence of X-actions that is the same externally, 
such that the diagram commutes. 

  

f ( y ) 

y y ' 

f ( y ' ) 

Y - a c t i o n 

X - a c t i o n s 

f f 

 

This always works! 
Invariants describe the reachable states of Y; simulation 
only needs to work from a reachable state.  
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Understanding A System: What Pays Off? 

1. The specification: first the state, then the actions 
Examples: File system, group communication 

2. The implementation state and the abstraction function 
Examples: redo recovery, Paxos, security 

3. Invariants 3. Visible transitions 
Examples:  
cache, redo recovery 

Examples:  
Paxos, transactions 
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Hard Questions 

What does the system really do? 
File system, group communication 

What should you abstract away? 
File system, cache, redo recovery 

What are the modules? 
Fedex, group communication, security, Paxos 

Can you do any useful proofs? 
Yes: Paxos, cache. No: Fedex, file system 
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Mental Tools 

Sets, functions, relations, graphs 
State machines 
Modules and composition—TLA, IOA, Z 

These are just ways of writing down state machines 
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Example: File system 

The tricky part is specifying happens when there’s a crash 
before a write has made it to the disk. 
type Dir = PathName → seq Byte 
var dir : Dir 

Write(p, x, data) =   
if crashed then  if crashed, write some prefix 

choose i ≤ data.size do data := data.subSeq(1, i)  
else skip fi;  
dir(p) := NewFile(dir(p), x, data) 

 
If there’s no ordering guarantee 

if crashed then  if crashed, write some subset 
choose w ⊆  data.domain do data := data.restrict(w)  
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Buffered File System 

With buffered writes, it’s even trickier: 
any subset of the writes since the last Sync can be lost. 
type Dir = PathName → seq Byte 
var dir : Dir 
 oldDirs : set Dir := {} 

Write(p, x, byte) =  var f := dir(p) | 
dir(p)   := NewFile(f, x, data); 
oldDirs(p) := {f ′ :IN oldDirs(p), w ⊆  data.domain |  
                        NewFile(f ′, x, data.restrict(w))} 

Sync() = oldDirs := {dir} 

Crash() = choose d ∈  oldDirs do dir := d; Sync() 
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Example: FedEx Package Tracking 

How to specify the FedEx package tracking system? 
First try: 

Packages, locations, transports, routes 
Events: package is seen (scanned), transport moves 
Queries: package history, projected route 

Second try: 
Packages, locations 
Events: package is seen (scanned) 
Queries: package history 

Modularity: Separate tracking from routing. 
An opposite example: specifying I/O hardware. 

Often the clean module includes the driver. 
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Example: Transactions 

The spec: Make a big atomic thing out of small ones. 
var ps : S Persistent State 
 vs : S Volatile State 

Do(action) = vs := action(vs) 
Commit() = ps := vs 
Abort() = vs := ps 
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Implementing Transactions 

Log the actions, commit by persisting the log, update 
persistent state in background.  

Need idempotent actions: s ⊕  log ⊕  log = s ⊕  log    
var psI : S Persistent State 

vsI : S Volatile State 
pLog : seq Action  Persistent Log
vLog : seq Action  Volatile Log 

 
abstract invariant 
ps = psI ⊕  pLog 
vs = vsI  

vsI = psI ⊕  pLog ⊕  vLog 

Do(action) = vsI := action(vsI); vLog := vLog + {action} 
Commit() = pLog := vLog 
Abort() = vs := ps ⊕  pLog; vLog := {} 
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Implementing Transactions (2) 

abstract invariant 
ps = psI ⊕  pLog 
vs = vsI  

vsI = psI ⊕  pLog ⊕  vLog 

Persist() = await vLog = {a} + tail do psI := a(psI); vLog := tail 

ps pLog vLog 
ps0 ⊕  done ⊕  done  + {a} + rest ⊕  {a} + rest 
ps0 ⊕  done ⊕  {a} ⊕  done  + {a} + rest ⊕            rest

 
Cleanup() = await vLog = {} do pLog := {} 
Crash() = vsI := ps ⊕  pLog; vLog := pLog 
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Example: Redo Recovery 

After Commit, we update persistent state in background.  
These updates must not change the abstract state. 
var sI : S State log : seq Action 
abstract s = sI ⊕  log 

Install() = choose a ∋  sI ⊕  log = a(sI) ⊕  log do sI := a(sI) 
Cleanup() = choose hd, tail ∋  log = hd + tail do 
         await sI ⊕  log = sI ⊕  tail do log := tail  

But a(sI) ⊕  log = sI ⊕  ({a} + log).  
So in Install, a suitable a must be idle if prefixed to log; 
it makes no difference to the final state.  

(Lomet and Tuttle) 
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Redo Recovery (2) 

abstract s = sI ⊕  log 

Install() = choose a ∋  sI ⊕  log = sI ⊕  ({a} + log) do sI := a(sI) 

In Install, a must be idle if prefixed to log.  
How can this happen? Easy case: all actions are v := const. 

Then any a already in log will be idle if prefixed. 
In a database system, we install actions v := cv, where cv 
is the current value of v in vs, the DB’s buffer cache. 

If actions read some variables, it’s harder to find idle ones. 
b is final if no busy action later in log reads its writes. 
 b not final a: v:=3 ... v:=5 ... b: x:=v+2 ... y:=x+4 

Appending a final b’s writes to log makes b idle, so installable.  
 b made idle a: v:=3 ... v:=5 ... b: x:=v+2 ... x not read ... x:=7 
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Example: Replicated State Machines 

The spec, good for arbitrary deterministic computations. 
var s : S State 
Do(action) = (s, v) := action(s); return v 

The implementation: 
var log : seq Action sp : S State 
 np : Nat last action applied 
abstract sp = sinitial ⊕  log 
invariant sp = sinitial ⊕  log.subSeq(1, np) states agree with log 

Do(action) = 
log := log + {action};  
choose p ∋  np = log.size − 1 do np := np + 1; (sp,v) := action (sp);  
return v 

Catchupp() = await np < log.size do np := np + 1;  sp := log(np)(sp).s 
Transferp,q() = await np < nq do np := nq;  sp  := sq 
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Example: Consensus 

How do we implement the global log of RSM? 
As a sequence of consensus problems, one per log action. 
Consensus is tricky, but it’s much easier when separated 
from RSM and from configuration changes. 
The spec, good for arbitrary deterministic computations. 
var v : (V or nil) 
 allowed : set V 

Allow(w) = allowed := allowed ∪  {w} 
Decision() = return v or return nil 
 
Decide() = choose w ∈  allowed do v := w 
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Implementing Consensus: Paxos 

The idea: do try for consensus on v until get a majority 
The implementation: 
var rp,t : V or no or nil once non-nil, cannot changez 
abstract v = (choose t, v ∋  a majority of rp,t = v do v) 

A majority must agree with any previous one. 
So, try the v of the most recent trial that isn’t dead. 
Force trials to die by getting processes to set rp,t to no. 
When does it decide? When process p does rp,t and forms a 
majority. But no one knows this at the time! 
Modularity: Use the RSM to change the set of processes. 
Paxos is the best algorithm for asynchronous consensus 

By Lamport and Liskov/Oki; Byzantine version by Castro/Liskov. 
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Example: Group Communication  

The idea: lots of copies of RSM that form a DAG. 
Each copy is called a view. It has an initial state and a set of 
processes that do RSM in the view. 
A process is in a sequence of views that’s a path in the DAG. 
A view change forms new views from existing ones. 

If v has only one parent u, v’s initial state is u’s final state 
(perhaps with some suffix of actions dropped). 
Virtual synchrony ensures that all processes moving to v 
see the same actions in u, hence have the same final state. 

If v has more than one parent, must merge their final states 
to get v’s initial state. 

Modularity: Application-dependent. Easy if actions commute. 

u
vw

v
uw
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Example: Security 

Principals: abstraction of “who says?” or “who is trusted?” 
P says “read file foo” 

Speaks for: abstraction of trust or responsibility 
P speaks for Q — if P says something, so does Q 

Examples 
Key 743891743 speaks for blampson@microsoft.com 
blampson@microsoft speaks for researchers@microsoft 
blampson@microsoft speaks forread/write research.microsoft.com/lampson 

This logic abstracts crypto, physical security, encoding, etc. 
The soundness of the abstraction is the hardest part. 

Can do positive proofs in the logic,  
negative ones by simulation or model checking.  
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Example: Cache 

var m : A → V   
Read(a) = return m(a) Write(a, v) = m(a) := v 

Implementation: 
var mI : A → V 
 c : A → (V or nil) 

 

def a.live ≡ c(a) ≠ nil 
 a.dirty ≡ a.live ∧  c(a) ≠ m(a) 
 
abstract m(a) = if a.live then c(a) else mI(a)  
invariant {a | c(a) ≠ nil}.size ≤ N 

Read(a) = await a.live do return c(a)  
Write(a, v) = await a.live do c(a) := v 

MtoC(a) = if a.live then skip  
    else choose a′ do CtoM(a′) od; c(a) := m(a)  
CtoM(a) = if a.dirty then m(a) := c(a) else skip fi; c(a) := nil 
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Multiprocessor Cache 
var mI : A → V 
 cp : A → (V or nil) 

lockedp : A → Bool 
dirtyp  : A → Bool 

def a.clean ≡ (∀ p | ~ a.dirtyp) a.livep ≡ cp(a) ≠ nil 
 a.free ≡ (∀ p | ~ a.lockedp) a.currentp ≡ (cp(a) = m(a)) 
 a.onlyp ≡ (∀ q ≠ p | ~ a.liveq) 

abstract m(a) = (if a.clean then  mI(a) 
  else choose p ∋  a.dirtyp then cp(a)) 
invariant a.dirtyp ⇒ a.livep      ⇒ a.currentp 
 a.dirtyp ⇒ a.lockedp ⇒ ~ a.liveq ∧  ~ a.lockedq 

Read(a) = await a.livep do return cp(a) 
Write(a, v) = await a.lockedp do cp(a) := v; a.dirtyp := true 
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Multiprocessor Cache (2) 

def a.clean ≡ (∀ p | ~ a.dirtyp) a.livep ≡ cp(a) ≠ nil 
 a.free ≡ (∀ p | ~ a.lockedp) a.currentp ≡ (cp(a) = m(a)) 
 a.onlyp ≡ (∀ q ≠ p | ~ a.liveq) 
invariant a.dirtyp ⇒ a.livep      ⇒ a.currentp 
 a.dirtyp ⇒ a.lockedp ⇒ ~ a.liveq ∧  ~ a.lockedq 

Read(a) = await a.livep do return cp(a) 
Write(a, v) = await a.lockedp do cp(a) := v; a.dirtyp := true 

MtoCp(a) = await ~ a.dirtyp ∧  (a.lockedp ∨  a.free) do cp(a) := m(a) 
CtoMp(a) = await    a.dirtyp do m(a) := cp(a); a.dirtyp := false 
Dropq(a) = await ~ a.dirtyp do cp(a) := nil  

Acquirep(a) = await a.free ∧  a.onlyp do a.lockedp := true 
Releasep(a) = await ~ a.dirtyp do a.lockedp := false 

CtoCp,q(a) = await a.free ∧  a.livep do cq(a) := cp(a) 
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Marketing 

To sell, you must have “metal” tools that help the developer 
Type-checking and other kinds of abstract execution 
Model-checking of important properties 
Proofs (usually only for hardware) 
Test coverage analysis 

A crisis helps—floating divide bug, buffer overruns 
Sometimes a fad will do—the internet sold type-checking 
and GC in Java. But it must be automated. 
Why so hard? Willpower is best as long as it works.  

But often you find out only later that it’s not working. 
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Proofs? 

Many things are possible—cost-benefit is the issue 
Some things that have worked: 

Simple properties of software: type-correct, no races, 
device driver follows OS protocol 
Proofs of tricky algorithms, especially concurrent ones 
Hardware, esp. model checking 

Sound and complete? No. 
“Sorry, I can’t find any more bugs.” 
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Further reading:  

Principles of Computer Systems  
For security, Computer Security in the Real World 
For consensus, ABCD’s of Paxos 
All are at research.microsoft.com/lampson. 


