
1

Hints and Principles for

Computer System Design

Butler Lampson
Microsoft Research

Heidelberg Laureate Forum
August 27, 2015

Overview

 A 32-year update of my 1983 Hints for Computer Systems

 These are mostly hints, often not consistent or precise
 Hints suggest—no nitpicking allowed

 STEADY by AID
 What: Simple, Timely, Efficient,Adaptable,Dependable,Yummy

 How: Approximate, Incremental, Divide & conquer, …

 The future: Engagement with the physical world

27 January 2016 Lampson: Hints and Principles 2

There are three rules for writing a novel. Unfortunately, no one knows what they are.

—Somerset Maugham

You got to be careful if you don’t know where you’re going, because you might not get there.

—Yogi Berra

The quest for precision, in words or concepts or meanings, is a wild goose chase.

—Karl Popper

What: Goals

3

STEADY

*More important today

[Data is not information,] Information is not knowledge, Knowledge is not wisdom,
Wisdom is not truth, Truth is not beauty, Beauty is not love, Love is not music and
Music is THE BEST” —Frank Zappa

Lampson: Hints and Principles

 Simple

 Timely (to market)*

 Efficient

 Adaptable*

 Dependable

 Yummy*

First ↔ Fast ↔ Frugal ↔ Flexible ↔ Faithful ↔ Fancy ↔ Fun

TTM ↔ speed ↔ cost ↔ change ↔ trust ↔ features ↔ coolness

27 January 2016

How: Methods

27 January 2016 4

AID

Lampson: Hints and Principles

 Approximate
 Good enough

 Loose specs

 Lazy/speculative

 Incremental
 Indirect

 Iterate

 Extend

 Divide & conquer
 Interfaces to abstractions

 Recursive

 Atomic

 Concurrent

 Replicated

Kinds of Software

27 January 2016 5Lampson: Hints and Principles

 Precise vs. approximate software
 Precise: Get it right

▬ avionics, banks, Office

 Approximate: Get it soon, make it cool
▬ search, shopping, Twitter

 Which kind is yours?
 One isn't better or worse than the other,

 but they are different.

Unless in communicating with it [a computer] one says exactly what one means,

trouble is bound to result. —Turing

There’s no sense being exact about something if you don’t even know what you’re

talking about.—von Neumann

27 January 2016 6

A point of view is worth 80 points of IQ. —Alan Kay

Science is not there to tell us about the Universe,

but to tell us how to talk about the Universe. —Niels Bohr

A good notation has a subtlety and suggestiveness which at times make it seem almost

like a live teacher… and a perfect notation would be a substitute for thought. —Russell

Lampson: Hints and Principles

Coordinate Systems and Notation

 Choose the right coordinate system
 Like center of mass for dynamics, or eigenvectors for matrices
 Ex: State as being vs. becoming, function as code vs. table vs. overlay

 Choose a good notation
 This is why domain specific languages succeed

 Relations cover most needs for design
▬ subsuming sets, functions, graphs, programs

▬ with composition, transitive closure , union, intersection as primitives

Coordinates: State

 State as being vs. becoming
 Being: map from names values

 Becoming: initial state + log of updates

 Being is the usual form

 Becoming is good for undo, versions and recovery

27 January 2016 Lampson: Hints and Principles 7

Example Being Becoming

Image bitmap display list

Document sequence of characters sequence of inserts / deletes

Database table + buffer cache redo-undo log

Eventual consistency names values read any subset of updates that are

commutative and associative

Don’t ask what it means, but rather how it is used. —Wittgenstein

No matter how far down the wrong road you have gone, turn back now. —Turkish Proverb

Coordinates: Functions

 Function as code vs. table vs. overlay
 Code: execute f(x) to get the result

 Table: lookup x in a set of (argument, result) pairs

 Overlay: try f1(x) , if undefined try f2(x), …

27 January 2016 Lampson: Hints and Principles 8

Example Code Table Overlay

Main memory — RAM write buffer

Database — data on disk buffer cache

bin for shell cmd — /bin directory search path

Function of

simple argument

run the code precomputed results saved old results

Database view run the query materialized view incremental updates

If all you have is a hammer, everything looks like a nail. —A. Maslow

Write a Spec: State

27 January 2016 Lampson: Hints and Principles 9

The purpose of abstracting is not to be vague,

but to create a new semantic level in which one can be absolutely precise. —Dijkstra

Beware of bugs in the above code; I have only proved it correct, not tried it. —Knuth

 At least, write down the abstract state

 Abstract state is real

 Example: File system state is PathNameByteArray

Write a Spec: Actions

27 January 2016 Lampson: Hints and Principles 10

The purpose of abstracting is not to be vague,

but to create a new semantic level in which one can be absolutely precise. —Dijkstra

 At least, write down the state—Abstract state is real

 Example: File system state is PathNameByteArray

 Then, write down the interface actions (APIs),

 which ones are external, and what each action π does

 Example: For failures, volatile vs. persistent state

 On crash, volatile := persistent

 On sync, persistent := volatile

Write a Spec: Abstraction Function

27 January 2016 Lampson: Hints and Principles 11

The purpose of abstracting is not to be vague,

but to create a new semantic level in which one can be absolutely precise. —Dijkstra

 At least, write down the state—Abstract state is real

 Example: File system state is PathNameByteArray

 Then, write down the interface actions (APIs),

 which ones are external, and what each action π does

 Next, write the abstraction function F from code to spec

F(s)

s

F

spec

code

Write a Spec: Proof

27 January 2016 Lampson: Hints and Principles 12

Newcombe et al, How Amazon Web Services uses formal methods, Comm ACM 58, 4

(March 2015), pp 66-73

 At least, write down the state—Abstract state is real

 Example: File system state is PathNameByteArray

 Then, write down the interface actions (APIs),

 which ones are external, and what each action π does

 Next, write the abstraction function F from code to spec

 Finally, show that each action π preserves F:

F(s) F(s')

s s'

π

π

FF

spec

code
pre-state post-state

How: Methods

 Approximate
 Good enough

 Lazy/speculative

 Loose specs

 Incremental
 Compose (indirect, virtualize)

 Iterate

 Extend

AID

 Divide & conquer
 Interfaces to abstractions

 Recursive

 Replicated

 Concurrent

27 January 2016 13Lampson: Hints and Principles

AID: Divide & Conquer

27 January 2016 14Lampson: Hints and Principles

Civilization advances by extending the number of important operations which we can
perform without thinking about them. Operations of thought are like cavalry charges
in a battle — they are strictly limited in number, they require fresh horses, and must
only be made at decisive moments. —Whitehead

Don’t tie the hands of the implementer. —Martin Rinard

 Interfaces to abstractions: Divide by difference

 Limit complexity, liberate parts. TCP/IP, file system, HTML

 Platform/layers. OS, browser, DB. X86, internet. Math library

▬ Need this to ship

 Declarative. HTML/XML, SQL queries, schemas

▬ The program you think about takes only a few steps

 Synthesize a program from a partial spec. Excel Flashfill

▬ Signal + Search → Program

AID: Divide & Conquer

 Interfaces: Divide by difference

 Recursive: Divide by structure. Part ~ whole

 Quicksort, DHTs, path names. IPV6, file systems

 Replicated: Divide for redundancy, in time or space

 Retry: End to end (TCP). Replicated state machines.

 Concurrent: Divide for performance

 Stripe, stream, or struggle: BitTorrent, MapReduce

27 January 2016 15Lampson: Hints and Principles

If you come to a fork in the road, take it. —Yogi Berra

To iterate is human, to recurse divine. —Peter Deutsch

AID: Incremental

27 January 2016 16

Any problem in computing can be solved by another level of indirection. —David Wheeler

Compatible, adj. Different. —The Devil’s Dictionary of Computing

Lampson: Hints and Principles

 Indirect: Control namevalue mapping

 Virtualize/shim: VMs, NAT, USB, app compat, format versions

 Network: Source routeIP addrDNS nameservicequery

 Symbolic links, register rename, virtual methods, copy on write

 Iterate design, actions, components

 Redo: Log, replicated state machines (state as becoming)

 Undo. File system snapshots, transaction abort

 Scale. Internet, clusters, I/O devices

 Extend. HTML, Ethernet

Name Value

Indirect

AID: Approximate

 Good enough. Web, search engines, IP packets

 Eventual consistency. DNS, Dynamo, file/email sync

 Loose coupling: springy flaky parts. Email, Fedwire

 Brute force. Overprovision, broadcast, scan, crash fast

 Strengthen (do more than is needed). Redo log, coarse locks

 Relax: small steps converge to desired result

 Routing protocols, daily builds, exponential backoff

 Hints: Trust, but verify

27 January 2016 17

I may be inconsistent. But not all the time.—Anonymous

Lampson: Hints and Principles

What: Goals

 Simple

 Timely (to market)*

 Efficient

 Adaptable*

 Dependable

 Yummy*

 First↔Fast↔Frugal↔Flexible↔Faithful↔Fancy↔Fun

 Need tradeoffs—You can’t get all these good things

STEADY

27 January 2016 Lampson: Hints and Principles 18

27 January 2016 19

Less is more. —Browning

Everything should be as simple as possible, but no simpler. —Einstein

I’m sorry I wrote you such a long letter; I didn’t have time to write a short one. —Pascal

The best is the enemy of the good. —Voltaire

If you don’t think too good, don’t think too much. —Ted Williams

And the users exclaimed with a laugh and a taunt,
“It's just what we asked for but not what we want.” —Anonymous

Lampson: Hints and Principles

STEADY: Simple, Timely

 Simple is important because we can’t do much
 Simple enough? I can still understand it

▬ But when it evolves, only abstraction and interfaces can save me

 Simple is hard, often not rewarded—“That’s obvious.”
▬ Why didn’t computer scientists invent the web?

 Timely: Good enough is good enough
 The web is successful because it doesn’t have to work.

 Learn what customers really want—Iterative development

STEADY: Efficient, Adaptable

 Efficient has two faces: for the implementer, for the client
 Not unrelated: the client wants it fast and cheap enough

 Efficient enough, not optimal

 Adaptable–Plan for success

 Evolution/scaling: Successful systems live a long time

▬ 2015 PC = 100,000 Xerox Alto, Web grew from 100 users to 109

 Incremental update: Big things change a little at a time

27 January 2016 20

An efficient program is an exercise in logical brinkmanship. —Dijkstra

I see how it [the phone] works. It rings, and you have to get up. —Degas

That, Sir, is the good of counting. It brings everything to a certainty, which before
floated in the mind indefinitely.—Samuel Johnson

Success is never final. —Churchill (attributed)

APL is like a diamond; Lisp is like a ball of mud. —Joel Moses

Lampson: Hints and Principles

STEADY: Dependable, Yummy

 Dependable: Reliable, Available, Secure
 Reliable: Gives the right answer (safe)

 Available: Gives the answer promptly (live)

 Secure: Works in spite of bad guys

 Often dependable undo is the most important thing

 Yummy: Users really want it
 Function: Spreadsheets, the web, smartphones

 Design: Apple’s forté

27 January 2016 21

But who will watch the watchers? She'll just begin with them and buy their silence. —Juvenal

The unavoidable price of reliability is simplicity. It is a price which the very rich find most
hard to pay. —Tony Hoare

Lampson: Hints and Principles

The Future: What Do Computers Do?

Simulate 1950-

ongoing

nuclear weapons, payroll,

protein folding,

games, virtual reality

Connect
(and store)

1980-

ongoing

email, airline tickets,

books, movies, Bing,

Virtual Earth

Engage (with

physical world)

2010-... factories, cars,

robots, smart dust:

Embodiment

27 January 2016 Lampson: Hints and Principles 22

The future ain’t what it used to be.—Yogi Berra

Reality is that which, when you stop believing in it, doesn’t go away.—Philip K. Dick

Big Trends

 Connectivity—cloud and data everywhere

 Ubiquity, invisibility: systems everywhere

 Scaling—billions of users, billions of gigabytes

 Approximation—good enough is good enough

 AI and systems are converging

 Reusable components are finally catching on

 Uncertainty—fundamental to engagement

 Dependability—critical systems have to work

27 January 2016 Lampson: Hints and Principles 23

They always say time changes things, but you actually have to change them yourself.
—Andy Warhol

You see things; and you say, ‘Why?’ But I dream of things that never were; and I say ‘Why not?’

—Shaw

Grand Challenge: Zero Traffic Deaths

 Cars have to drive themselves

 A pure computer science problem

 Needs
 Computer vision

 World models for roads and vehicles

 Dealing with uncertainty about sensor inputs, vehicle

performance, changing environment

 Dependability

 DARPA Challenges, Google cars a start

 Huge economic impact

 Safety trumps liability

27 January 2016 Lampson: Hints and Principles 24

Problems worthy of attack prove their worth by hitting back.—Piet Hein

Dealing with Uncertainty

 Unavoidable in the physical world

 Need good models of what’s possible, and their limits

 Unavoidable for “natural” user interfaces: speech,

writing, language

 The machine must guess; what if it guesses wrong?

 Paradigm?: Probability distributions

 Distributions as a standard data type?

▬ Parameterized over the domain (like lists). What are the operations?

 A start: Microsoft Infer.Net, probabilistic programming

27 January 2016 Lampson: Hints and Principles 25

Logic, like whiskey, loses its beneficial effect when taken in too large quantities.—Lord Dunsany

Do I contradict myself? Very well then I contradict myself. (I am large, I contain multitudes.)
—Whitman

Dependable No Catastrophes

 A realistic way to reduce aspirations
 Focus on what’s really important

 What’s a catastrophe? It has to be very serious
 USS Yorktown: database failure → can’t run engines

 Terac 25 and other medical equipment: Patients die

 Architecture: Normal vs. catastrophe mode
 Catastrophe mode high assurance CCB

 Catastrophe mode requires limited goals = limited function

 And strict bounds on complexity
▬ Less than 50k lines of code? Can verify? Examples: Ironclad, FSCQ

27 January 2016 Lampson: Hints and Principles 26

If you can’t make it fast and correct, make it fast.—Luca Cardelli

As a rule, software systems do not work well until they have been used, and have failed
repeatedly, in real applications.—David Parnas

Summary

27 January 2016 27

If I have seen further than others, it is because I have stood on the shoulders of giants.
—Schoolmen of Chartres, via Newton

The only thing new in the world is the history you don’t know. —Harry Truman

History doesn’t repeat, but it rhymes. —Mark Twain

Lampson: Hints and Principles

 STEADY by AID

 What: Simple, Timely, Efficient, Adaptable, Dependable, Yummy

 How: Approximate, Incremental, Divide & conquer

 If you only remember three things:
 Keep it simple

 Interfaces to abstractions

 Write a spec

 The future: Engagement with the physical world

