
Practical Principles for Computer Security B. W. Lampson  2 August 2006 1 

Practical Principles for Computer Security 

 
Butler Lampson 

 
Marktoberdorf  
August 2006 

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 2 

Outline 

Introduction: what is security? 
Principals, the “speaks for” relation, and chains of 
responsibility 
Secure channels and encryption 
Names and groups 
Authenticating systems 
Authorization 
Implementation 
 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 3 

REAL-WORLD SECURITY 

It’s about value, locks, and punishment.  
− Locks good enough that bad guys don’t break in 

very often. 
− Police and courts good enough that bad guys that do 

break in get caught and punished often enough. 
− Less interference with daily life than value of loss.  

 
Security is expensive—buy only what you need. 

− People do behave this way 
− We don’t tell them this—a big mistake 
− Perfect security is the worst enemy of real security 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 4 

Elements of Security 

Policy: Specifying security 
 What is it supposed to do?  
Mechanism: Implementing security 
 How does it do it?  
Assurance: Correctness of security 
 Does it really work?  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 5 

Abstract Goals for Security 

Secrecy controlling who gets to read information 
Integrity controlling how information changes or 

resources are used 
Availability providing prompt access to information 

and resources 
Accountability knowing who has had access to 

information or resources 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 6 

Dangers  
Dangers 
Vandalism or sabotage that  

– damages information integrity  
– disrupts service availability 

Theft of money integrity 
Theft of information secrecy 
Loss of privacy secrecy 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 7 

Vulnerabilities 
 

Vulnerabilities 
– Bad (buggy or hostile) programs 
– Bad (careless or hostile) people  

giving instructions to good programs 
– Bad guys corrupting or eavesdropping on 

communications 
Threats 

– Adversaries that can and want to exploit 
vulnerabilities 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 8 

Why We Don’t Have “Real” Security 

A. People don’t buy it 
– Danger is small, so it’s OK to buy features instead. 
– Security is expensive. 

Configuring security is a lot of work. 
Secure systems do less because they’re older. 

– Security is a pain.  
It stops you from doing things. 
Users have to authenticate themselves. 

 

B. Systems are complicated, so they have bugs. 
– Especially the configuration 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 9 

“Principles” for Security 

Security is not formal 
Security is not free  
Security is fractal  
 
Abstraction can’t keep secrets 

– “Covert channels” leak them  
 
It’s all about lattices  
 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 10 

ELEMENTS OF SECURITY 

Policy: Specifying security 
 What is it supposed to do?  
Mechanism: Implementing security 
 How does it do it?  
Assurance: Correctness of security 
 Does it really work?  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 11 

Specify: Policies and Models 

Policy  — specifies the whole system informally. 
Secrecy Who can read information? 
Integrity Who can change things, and how? 
Availability  How prompt is the service? 

Model—specifies just the computer system, but does so 
precisely. 

Access control model guards control access  
to resources. 

Information flow model classify information, 
prevent disclosure. 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 12 

Implement: Mechanisms and Assurance 

Mechanisms — tools for implementation. 
Authentication Who said it? 
Authorization Who is trusted? 
Auditing  What happened? 

Trusted computing base. 
Keep it small and simple. 
Validate each component carefully. 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 13 

 Information flow model 
(Mandatory security) 

A lattice of labels for data: 
– unclassified < secret < top secret;  
– public < personal < medical < financial 

label( f (x)) = max(label( f ), label(x)) 
Labels can keep track of data properties:  

– how secret  Secrecy   
– how trustworthy Integrity  

When you use (release or act on) the data, user needs a ≥ 
clearance  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 14 

Access Control Model 

Guards control access to valued resources. 
 
 
 
 
 

Reference 
monitor ObjectDo 

operation

Resource

Principal 

Guard RequestSource 

Audit 
log 

Authentication Authorization



Practical Principles for Computer Security B. W. Lampson  2 August 2006 15 

Access Control 

Guards control access to valued resources. 
Structure the system as — 

Objects entities with state. 
Principals can request operations  
 on objects. 
Operations how subjects read or change objects. 

 

Reference 
monitor Object

Do 
operation

Resource

Principal

Guard RequestSource

Audit 
log 

Authentication Authorization



Practical Principles for Computer Security B. W. Lampson  2 August 2006 16 

Access Control Rules 

Rules control the operations allowed 
for each principal and object. 
 

Principal may do Operation      on Object 
Taylor Read File “Raises” 
Lampson Send “Hello” Terminal 23 
Process 1274 Rewind Tape unit 7 
Schwarzkopf Fire three shots Bow gun 

Jones Pay invoice 432 Account Q34 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 17 

Mechanisms—The Gold Standard 

Authenticating principals 
− Mainly people, but also channels, servers, programs 

(encryption makes channels, so key is a principal) 
Authorizing access 

− Usually for groups, principals that have some 
property, such as “Microsoft employee” or “type-
safe” or “safe for scripting” 

Auditing 
 
Assurance 

– Trusted computing base  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 18 

END-TO-END EXAMPLE 

Alice is at Intel, working on Atom, a joint Intel-
Microsoft project 
Alice connects to Spectra, Atom’s web page, with SSL 

 

says 

 

KSSL   

says   
says 

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel  

KAlice   
Spectra

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 19 

Chain of responsibility 

Alice at Intel, working on Atom, connects to Spectra, 
Atom’s web page, with SSL 
Chain of responsibility:  
 KSSL ⇒ Ktemp ⇒ KAlice  
 ⇒ Alice@Intel ⇒ Atom@Microsoft  ⇒ Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 20 

Principals 

Authentication: Who sent a message? 
Authorization: Who is trusted? 
Principal — abstraction of “who”: 

People Lampson, Taylor 
Machines VaxSN12648, Jumbo 
Services SRC-NFS, X-server 
Groups SRC, DEC-Employees 
Roles Taylor as    Manager 
Joint authority Taylor and Lampson 
Weakening Taylor or     UntrustedProgram 
Channels Key #7438 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 21 

Theory of Principals 

Principal says statement P says s  
Lampson says “read /MSR/Lampson/foo” 
MSR-CA says “Lampson’s key is #7438” 
Axioms 

If A says s and A says (s implies s') then A says s' 
If A = B then (A says s) = (B says s) 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 22 

The “Speaks for” Relation  ⇒ 

Principal A speaks for B about T A ⇒T B  
If A says something in set T, B does too:  
Thus, A is stronger than B, or responsible for B, about T 

Precisely: (A says s) ∧ (s ∈ T) implies (B says s) 
These are the links in the chain of responsibility 
Examples 

Alice ⇒ Atom group of people 
Key #7438 ⇒ Alice key for Alice 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 23 

Delegating Authority 

How do we establish a link in the chain: a fact Q ⇒ R 
The “verifier” of the link must see evidence, of the form 

“P  says Q ⇒ R” 
There are three questions about this evidence 

– How do we know that P says the delegation? 
– Why do we trust P for this delegation? 
– Why is P willing to say it? 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 24 

How Do We Know P says X? 

If P is then 
a key P signs X cryptographically 
some other channel message X arrives on channel P 
the verifier itself X is an entry in a local database 
These are the only ways that the verifier can directly 
know who said something: receive it on a secure channel 
or store it locally 
Otherwise we need C ⇒ P, where C is one of these cases 

– Get this by recursion 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 25 

Why Do We Trust The Delegation? 

We trust A to delegate its own authority. 
Delegation rule: If P says Q ⇒ P then Q ⇒ P 

Reasonable if P is competent and accessible. 
 
Restrictions are possible 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 26 

Why Is P Willing To Delegate To Q?  

Some facts are installed manually  
– KIntel ⇒ Intel, when Intel and Microsoft establish a 

direct relationship  
– The ACL entry Lampson ⇒ usr/Lampson 

Others follow from the properties of some algorithm  
– If Diffie-Hellman yields KDH, then I can say  

“KDH ⇒ me, provided  
You are the other end of the KDH run   
You don’t disclose KDH to anyone else 
You don’t use KDH to send anything yourself.”  

In practice I simply sign KDH ⇒ Kme 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 27 

Why Is P Willing To Delegate To Q?  

Others follow from the properties of some algorithm  
– If server S starts process P from and sets up a 

channel C from P, it can say C ⇒ SQLv71 

Of course, only someone who believes S ⇒ SQLv71 
will believe this 
To be conservative, S might compute a strong hash 
HSQLv71 of SQLv71.exe and require  

Microsoft says “HSQLv71 ⇒ SQLv71”  
before authenticating C 

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 28 

End-To-End Example 

 

says 

KSSL   

says   
says 

Alice’s 
smart card 

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra 

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 29 

Chain of Responsibility 

Alice at Intel, working on Atom, connects to Spectra, 
Atom’s web page, with SSL 
Chain of responsibility:  
 KSSL ⇒ Ktemp ⇒ KAlice  
 ⇒ Alice@Intel ⇒ Atom@Microsoft  ⇒ Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 30 

Authenticating Channels 

Chain of responsibility:  
KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒ ... 

Ktemp says  KAlice says     
(SSL setup) (via smart card)     

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page 

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 31 

Authenticating Names: SDSI 

A name is in a name space, defined by a principal P 
– P is like a directory. The root principals are keys.  

Rule: P speaks for any name in its name space 
KIntel ⇒ Intel ⇒ Intel/Alice   (= Alice@Intel) 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   Spectra
ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 32 

Authenticating Names 

KIntel ⇒ Intel ⇒ Intel/Alice   (= Alice@Intel) 
Ktemp ⇒ KAlice ⇒ Alice@Intel⇒ ...

 KIntel says   

 

says 

 

KSSL   

says   
says 

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 33 

End-To-End Example 

 

says 

KSSL   

says   
says 

Alice’s 
smart card 

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra 

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 34 

Authenticating Groups 

A group is a principal; its members speak for it 
– Alice@Intel ⇒ Atom@Microsoft 
– Bob@Microsoft ⇒ Atom@Microsoft 
– … 

Evidence for groups: Just like names and keys. 
KMicrosoft ⇒ Microsoft ⇒ Microsoft/Atom  
 (= Atom@Microsoft) 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 35 

Authenticating Groups 

KMicrosoft ⇒ Microsoft ⇒ Atom@Microsoft 

... ⇒ KAlice ⇒Alice@Intel ⇒ Atom@Microsoft⇒ ... 

  KMicrosoft says   

 

says 

 

KSSL   

says   
says 

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 36 

Authorization with ACLs 

View a resource object O as a principal 
P on O’s ACL means P can speak for O 

– Permissions limit the set of things P can say for O 
If Spectra’s ACL says Atom can r/w, that means 

Spectra says Atom@Microsoft ⇒r/w Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 37 

Authorization with ACLs 

Spectra’s ACL says Atom can r/w 

...⇒ Alice@Intel ⇒ Atom@Microsoft⇒r/w Spectra 

  Spectra says  

 

says 

 

KSSL   

says   
says 

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 38 

End-to-End Example: Summary 

Request on SSL channel: KSSL says “read Spectra” 
Chain of responsibility:  
 KSSL ⇒ Ktemp ⇒ KAlice  
 ⇒ Alice@Intel ⇒ Atom@Microsoft  ⇒ Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   Spectra
ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 39 

End-To-End Example 

 

says 

KSSL   

says   
says 

Alice’s 
smart card 

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra 

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 40 

Compatibility with Local OS? 

(1) Put network principals on OS ACLs 
(2) Let network principal speak for local one 

– Alice@Intel ⇒ Alice@microsoft 
– Use network authentication  

replacing local or domain authentication 
– Users and ACLs stay the same 

(3) Assign SIDs to network principals 
– Do this automatically 
– Use network authentication as before 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 41 

Summaries 

The chain of responsibility can be long 
Ktemp says KSSL ⇒ Ktemp 
KAlice says Ktemp ⇒ KAlice 
KIntel says KAlice ⇒ Alice@Intel 
KMicrosoft says Alice@Intel ⇒ Atom@Microsoft 
Spectra says Atom@Microsoft ⇒r/w Spectra 

Can replace a long chain with one summary certificate  
Spectra says KSSL ⇒r/w Spectra  

Need a principal who speaks for the end of the chain 
This is often called a capability  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 42 

Lattice of Principals 

⇒ is the lattice’s partial order 
A and B  max, least upper bound 
A  or   B  min, greatest lower bound 
A ⇒ B ≡ ( A = A and B ) ≡ ( B = A or B ) 

(A and B) says s  ≡  (A says s) and (B says s) 
(A  or   B) says s ⇐ (A says s)  or  (B says s) 

 
Could we interpret this as sets? Not easily: and is not 
intersection 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 43 

Facts about Principals 

A = B is equivalent to (A ⇒ B) and (B ⇒ A) 
⇒ is transitive 
and, or are associative, commutative, and idempotent 
and, or are monotonic: 

If A' ⇒ A then (A' and B) ⇒ (A and B) 
 (A'  or   B) ⇒ (A  or  B) 
Important because a principal may be stronger than 
needed 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 44 

Lattices: Information Flow to Principals 

A lattice of labels: 
– unclassified < secret < top secret;  
– public < personal  < medical  
         < financial 

Use the same labels as principals, and let ⇒ represent 
clearance 

–  lampson ⇒ secret  
Or, use names rooted in principals as labels 

–  lampson/personal, lampson/medical 
Then the principal can declassify 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 45 

SECURE CHANNELS 

A secure channel: 
• says things directly C says s  
• has known possible receivers secrecy 
 possible senders integrity  
• if P is the only possible sender, then C  ⇒ P  

Examples 
Within a node: operating system (pipes, etc.) 
Between nodes:  

Secure wire difficult to implement 
Network fantasy for most networks 
Encryption practical 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 46 

Names for Channels 

A channel needs a name to be authenticated properly 
– KAlice says Ktemp ⇒ KAlice 

It’s not OK to have 
– KAlice says “this channel ⇒ KAlice” 

unless you trust the receiver not to send this on another 
channel! 

– Thus it is OK to authenticate yourself by sending a 
password to amazon.com on an SSL channel 
already authenticated (by a Verisign certificate) as 
going to Amazon. 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 47 

Multiplexing a Channel 

Connect n channels A, B, ... to one channel X to make n 
new sub-channels X|A, X|B, ...  Each subchannel has its 
own address on X 
The multiplexer must be trusted 

A

B

C

MA

MB

MC

B, MB

A, MA

X

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 48 

Quoting 

 A | B  A quoting B 
A | B says s ≡ A says (B says s)  
 

Axioms 
| is associative 
| distributes over and, or 
| is idempotent: A | A = A 
A ⇒*⇒A|B A | B 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 49 

Multiplexing a Channel: Examples 
 

Multiplexer Main 
channel 

Subchannels Address 

OS node–node process–
process  

port or 
process ID  

Network 
routing  

node–
network  

node–node  node address  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 50 

Signed Secure Channels 

The channel is defined by the key: If only A knows K–1, 
then K ⇒ A (Actually, if only A uses K–1, then K ⇒ A) 
K says s is a message which K can verify 

 
The bits of “K says s” can travel on any path 

s 
Sign(K-1, s) }K says s

K says s{ Verify(K, s)
s

OK?



Practical Principles for Computer Security B. W. Lampson  2 August 2006 51 

Abstract Cryptography: Sign/Verify 

Verify(K, M, sig) = true iff sig = Sign(K', M) and K' = K-1 
– Is sig K’s signature on M? 

Concretely, with RSA public key: 
– Sign(K-1, M) = RSAencrypt(K-1, SHA1(M)) 
– Verify(K, M, sig) = (SHA1(M) = RSAdecrypt(K, sig)) 

Concretely, with AES shared key: 
– Sign(K, M)  =  SHA1(K, SHA1(K || M)) 
– Verify(K, M, sig) = ( SHA1(K, SHA1(K || M)) = sig) 

 
Concrete crypto is for experts only! 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 52 

Abstract Cryptography: Seal/Unseal 

Unseal(K-1, Seal(K, M)) = M, and without K-1 you can’t 
learn anything about M from Seal(K, M) 

Concretely, with RSA public key: 
– Seal(K, M) = RSAencrypt(K-1, IV || M) 
– Unseal(K, Msealed)  = RSAdecrypt(K, M sealed).M 

Concretely, with AES shared key: 
– Seal(K, M) =  AESencrypt(K, IV || M) 
– Unseal(K, M sealed) = AESdecrypt(K, M sealed).M 

 
Concrete crypto is for experts only! 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 53 

Sign and Seal 

Normally when sealing must sign as well!  
– Seal(Kseal

-1, M || Sign(K sign
-1, M)) 

Often Sign is replaced with a checksum ??? 
Concrete crypto is for experts only! 

Encrypt 
with K

Decrypt
with K

s

Checksum

K says s

OK

Checksum

K says s 

–1

s

=
 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 54 

Public Key vs. Shared Key 
Public key: K ≠ K-1 

– Broadcast 
– Slow 
– Non-repudiable (only one possible sender) 
– Used for certificates 

Key ⇒ name: KIntel says KAlice ⇒ Alice@Intel 
Temp key ⇒ key: Ktemp says KSSL ⇒ Ktemp 
 KAlice says Ktemp ⇒ KAlice 

Shared key: K = K-1 
– Point to point 
– Fast—100-3000x public key 

Can simulate public key with trusted on-line server 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 55 

Messages on Encrypted Channels 

If K says s, we say that s is signed by K 
Sometimes we call “K says s” a certificate 

The channel isn’t real-time: K says s is just bits 
K says s can be viewed as 

• An event: s transmitted on channel K 
• A pile of bits which makes sense if you know the 

decryption key 
• A logical formula 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 56 

Messages vs. Meaning 

Standard notation for Seal(Kseal
-1, M || Sign(K sign

-1, M)) is 
{M}K. This does not give the meaning 
Must parse message bits to get the meaning 

– Need unambiguous language for all K’s messages 
– In practice, this implies version numbers  

Meaning could be a logical formula, or English 
– A, B, {K}KC means C says “K is a key”.  

C says nothing about A and B. This is useless 
– {A, B, K}KC means C says “K is a key for A to talk 

to B”. C says nothing about when K is valid 
– {A, B, K, T}KC means C says “K is a key for A to 

talk to B first issued at time T” 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 57 

Replay 

Encryption doesn’t stop replay of messages. 
Receiver must discard duplicates. 
This means each message must be unique. 
 Usually done with sequence numbers. 
Receiver must remember last sequence number while 
the key is valid. 

Transport protocols solve the same problem. 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 58 

Timeliness  

Must especially protect authentication against replay 
If C says KA ⇒ A to B and Eve records this, she can get 
B to believe in KA just by replaying C’s message. 

Now she can replay A’s commands to B. 
If she ever learns KA, even much later, she can 
also impersonate A. 

To avoid this, B needs a way to know that C’s message 
is not old. 

Sequence numbers impractical—too much long-
term state. 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 59 

Timestamps and Nonces  

Timestamps 
With synchronized clocks, C just adds the time T, 
saying to B 

KC says KA ⇒ A at T 
Nonces 

Otherwise, B tells C a nonce NB which is new, and C 
sends to B 

KC says KA ⇒ A after NB  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 60 

AUTHENTICATING SYSTEMS: Loading 

A digest X can authenticate a program SQL: 
– KMicrosoft says “If image I has digest X then I is SQL” 

 formally X ⇒ KMicrosoft / SQL 
– This is just like KAlice ⇒ Alice@Intel  

But a program isn’t a principal: it can’t say things 
To become a principal, a program must be loaded into a 
host H 

– Booting is a special case of loading 
X ⇒ SQL makes H 

– want to run I if H likes SQL 
– willing to assert that SQL is running 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 61 

Roles: P as R 

To limit its authority, a principal can assume a role. 
People assume roles: Lampson as Professor 
Machines assume roles as nodes by running OS 
programs: Vax#1724 as BSD4.3a4 = Jumbo 
Nodes assume roles as servers by running services: 

Jumbo as SRC-NFS 
 

Metaphor: a role is a program 
Encoding: A as R ≡ A | R  if R is a role 
Axioms: A ⇒*⇒A|R A as R if R is a role  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 62 

Authenticating Systems: Roles 

A loaded program depends on the host it runs on. 
– We write H as SQL for SQL running on H 
–      (H as SQL) says s   =   H says (SQL says s) 

H can’t prove that it’s running SQL 
But H can be trusted to run SQL 

– KTUM says  (H as SQL) ⇒ TUM / SQL 
This lets H convince others that it’s running SQL 

– H says C ⇒ H as SQL  

– Hence C ⇒ TUM / SQL 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 63 

Node Credentials 

Machine has some things accessible at boot time. 
A secret Kws–1    A trusted CA key Kca 

Boot code does this: 
Reads Kws–1 and then makes it unreadable. 
Reads boot image and computes digest Xtaos. 
Checks Kca  says Xtaos  ⇒ Taos. 
Generates Kn–1, the node key. 
Signs credentials Kws says Kn ⇒ Kws as Taos  
Gives image Kn–1 , Kca , credentials, but not Kws–1. 

Other systems are similar: Kws as Taos as Accounting 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 64 

Node Credentials: Example 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 65 

Example: Server’s Access Control  
Kws  says Kn  ⇒ Kws as Taos node  credentials  
Kbwl  says Kn  ⇒ 
   (Kws as Taos) /\ Kbwl   

login 
session  

 

Kn  says C  ⇒ Kn channel  
C says C | pr  ⇒  
   (Kws as Taos as Accounting) /\ Kbwl 

process   

C | pr says “read file foo”  request 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 66 

Sealed Storage: Load and Unseal 

Instead of authenticating a new key for a loaded system, 
– Kws says Kn ⇒ Kws as Taos 

Unseal an existing key 
– SK = Seal(KWSseal

-1, < ACL: Taos, Stuff: KTaosOnWS
-1>) 

– Save(ACL: Taos, Stuff: KTaosOnWS
-1>) returns SK 

– Open(SK) returns KTaosOnWS
-1if caller ⇒ Taos 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 67 

Assurance: NGSCB (Palladium) 

A cheap, convenient, “physically” separate machine 
A high-assurance OS stack (we hope) 
A systematic notion of program identity 

– Identity = digest of (code image + parameters) 
Can abstract this: KMS says digest ⇒ KMS / SQL 

– Host certifies the running program’s identity: 
     H says  K ⇒ H as P 

– Host grants the program access to sealed data 
H seals (data, ACL) with its own secret key 
H will unseal for P if P is on the ACL  

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 68 

NGSCB Hardware 

Protected memory for separate VMs 
Unique key for hardware 
Random number generator 
Hardware attests to loaded software 
Hardware seals and unseals storage 
Secure channels to keyboard, display 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 69 

NGSCB Issues 

Privacy: Hardware key must be certified by manufacturer 
– Use Kws to get one or more certified, anonymous 

keys from a trusted third party 
– Use zero-knowledge proof that you know a mfg-

certified key 
Upgrade: v7of SQL needs access to v6 secrets 

– v6 signs “v7 ⇒ v6” 
– or, both ⇒ SQL 

Threat model: Other software 
– Won’t withstand hardware attacks 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 70 

NGSCB Applications 

Keep keys secure 
Network logon 
Authenticating server 
Authorizing transactions 
Digital signing 
Digital rights management 
 
Need app TCB: factor app into  

– a complicated , secure part that runs on Windows 
– a simple, secure part that runs on NGSCB 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 71 

NAMES FOR PRINCIPALS 

Authorization is to named principals. Users have to read 
these to check them. 
Lampson may read file report 

Root names must be defined locally 
 KIntel ⇒ Intel 

From a root you can build a path name 
Intel/Alice   (= Alice@Intel) 

With a suitable root principals can have global names. 
/DEC/SRC/Lampson may read file  
/DEC/SRC/udir/Lampson/report 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 72 

Authenticating Names 

KIntel ⇒ Intel ⇒ Intel/Alice   (= Alice@Intel) 
Ktemp ⇒ KAlice ⇒ Alice@Intel⇒ ...

 KIntel says   

 

says 

 

KSSL   

says   
says 

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 73 

Authenticating a Channel 

Authentication — who can send on a channel. 
C ⇒ P; C is the channel, P the sender. 

Initialization — some such facts are built in: Kca  ⇒ CA. 
To get new ones, must trust some principal, a 
certification authority. 

Simplest: trust CA to authenticate any name: 
 CA ⇒ Anybody  

Then CA can authenticate channels: 
Kca   says Kws  ⇒ WS 
Kca   says Kbwl  ⇒ bwl 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 74 

One-Way Authentication 

CA

A

,              Kb⇒B

,  Kca ⇒ CA
CA ⇒ Anybody

CA says  Kb⇒B 
Kb ⇒ B

CA knows

A learns

A knows

Kca says Kb ⇒ B 

Kca
-1

Ka
-1

Certificates

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 75 

Mutual Authentication 

CA

A B

,  Ka⇒A,  Kb⇒B

,  Kca ⇒ CA
CA ⇒ Anybody

CA says  Kb⇒B 
Kb ⇒ B

CA knows

A learns

A knows

Kca says Kb ⇒ B Kca says Ka ⇒ A 

Kca
-1

Kb
-1

Ka
-1 ,  Kca ⇒ CA

CA ⇒ Anybody

CA says  Ka⇒A 
Ka ⇒ A

B learns

B knows

Certificates

 

This also works with shared keys, as in Kerberos. 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 76 

Who Is The CA 

“Built In” 
CA’s in browsers 

– There are lots 
– Because of politics 
– Look at Tools / Internet options / 
Content / Publishers /  
Trusted root certification authorities 

This is a configuration problem 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 77 

Revocation 

Revoke a certificate by making the receiver think it’s 
invalid. 
To do this fast, the source of certificates must be online. 

This loses a major advantage of public keys, and 
reduces security. 

Solution: countersigning — 
An offline CAassert, highly secure. 
An online CArevoke, highly timely. 
Both must sign for the certificate to be believed, i.e., 

CAassert and CArevoke ⇒ Anybody  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 78 

Large-Scale Authentication 

A large system can’t have CA ⇒ Anybody. 
Instead, must have many CA's, one for each part. 

One natural way is based on a naming hierarchy: 
A tree of directories with principals as the leaves 

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 79 

Large-Scale Authentication: Example 
Keep trust as local as possible: 
Authenticating A to B needs trust only up to  
least common ancestor  

dec  for /dec/lampson → /dec/abadi 
root for /dec/lampson → /mit/clark 

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 80 

Trusting Fewer Authorities: Cross-Links  

For less trust, add links to the tree 
Now lampson trusts only dec for 
  /dec/lampson → /dec/mit/clark 

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

mit

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 81 

GROUPS and Group Credentials 

Defining groups: A group is a principal; its members 
speak for it 

Alice@Intel ⇒ Atom@Microsoft 
Bob@Microsoft ⇒ Atom@Microsoft 
. . . 

Proving group membership: Use certificates 
K Microsoft says Alice@Intel ⇒ Atom@Microsoft 

 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 82 

Authenticating Groups 

KMicrosoft ⇒ Microsoft ⇒ Atom@Microsoft 

... ⇒ KAlice ⇒Alice@Intel ⇒ Atom@Microsoft⇒ ... 

  KMicrosoft says   

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   Spectra
ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 83 

What Is A Group 

Set of principals 
– Alice@Intel ⇒ Atom@Microsoft 

Principals with some property 
– Resident over 21 years old 
– Type-checked program 

Can think of the group (or property) as an attribute of 
each principal that is a member 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 84 

Certifying Properties / Attributes 

Need a trusted authority: CA ⇒ typesafe 

– Actually KMS says CA ⇒ KMS / typesafe 
Usually done manually 
Can also be done by a program P 

– A compiler 
– A class loader  
– A more general proof checker 

Logic is the same: P ⇒ typesafe 
– Someone must authorize the program: 
– KMS says P ⇒ KMS / typesafe 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 85 

Groups As Parameters 

An application may have some “built-in” groups 
Example: In an enterprise app, each division has 

– groups: manager, employees, finance, marketing 
– folders: budget, advertising plans, ... 

Thus, the steel division is an instance of this, with 
– steelMgr, steelEmps, steelFinance, steelMarketing 
– folders: steelBudget, steelAdplans, ... 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 86 

P and Q: Separation of Duty 

Often we want two authorities for something. 
We use a compound principal with and to express this: 
A and B  max, least upper bound 
A ⇒ B ≡ ( A = A and B )  
(A and B) says s ≡ (A says s) ∧ (B says s) 

Lampson and Taylor two users 
Lampson and Ingres user running an application 
CAassert and CArevoke online and offline CAs 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 87 

P or Q: Weakening 

Sometimes want to weaken a principal 
A  or   B  min, greatest lower bound 
A ⇒ B ≡ ( A = A and B ) ≡ ( B = A or B ) 
(A or B) says s ⇐ (A says s) ∨ (B says s) 

– A ∨ B says “read f ” needs both A⇒R f and B⇒R f  

– Example: Java rule—callee ⇒ caller ∨ callee-code 
– Example: NT restricted tokens—if process P is 

running untrusted-code for blampson then 
P ⇒ blampson ∨ untrusted-code 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 88 

P as R: Roles 

To limit its authority, a principal can assume a role. 
People assume roles: Lampson as Professor 
Machines assume roles as nodes by running OS 
programs: Vax#1724 as BSD4.3a4 = Jumbo 
Nodes assume roles as servers by running services: 

Jumbo as SRC-NFS 
 

Metaphor: a role is a program 
Encoding: A as R ≡ A | R  if R is a role 
Axioms: A ⇒*⇒A|R A as R if R is a role  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 89 

AUDITING  

Checking access: 
Given a request Q says read O  
 an ACL P may read/write O  

Check that Q speaks for P Q ⇒ P  
 rights are OK read/write ≥ read 

Auditing 
Each step is justified by  

a signed statement, or 
a rule 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 90 

Summary: The “Speaks for” Relation  ⇒ 

Principal A speaks for B about T A ⇒T B  
If A says something in set T, B does too:  
Thus, A is stronger than B, or responsible for B, about T 

Precisely: (A says s) ∧ (s ∈ T) implies (B says s) 
These are the links in the chain of responsibility 
Examples 

Alice ⇒ Atom group of people 
Key #7438 ⇒ Alice key for Alice 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 91 

Summary: Chain of Responsibility 

Alice at Intel, working on Atom, connects to Spectra, 
Atom’s web page, with SSL 
Chain of responsibility:  
 KSSL ⇒ Ktemp ⇒ KAlice  
 ⇒ Alice@Intel ⇒ Atom@Microsoft  ⇒ Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   



Practical Principles for Computer Security B. W. Lampson  2 August 2006 92 

References 

Look at my web page for these: 
research.microsoft.com/lampson 
Computer security in the real world. At ACSAC 2000. A 
shorter version is in IEEE Computer, June 2004 
Authentication in distributed systems: Theory and 
practice. ACM Trans. Computer Sys. 10, 4 (Nov. 1992) 
Authentication in the Taos operating system. ACM Trans. 
Computer Systems 12, 1 (Feb. 1994)  
SDSI—A Simple Distributed Security Infrastructure, 
Butler W. Lampson and Ronald L. Rivest.  



Practical Principles for Computer Security B. W. Lampson  2 August 2006 93 

References 

Jon Howell and David Kotz. End-to-end authorization. In 
Proc. OSDI 2000 
Paul England et al. A Trusted Open Platform, IEEE 
Computer, July 2003 
 
Ross Anderson—www.cl.cam.ac.uk/users/rja14 
Bruce Schneier—Secrets and Lies 
Kevin Mitnick—The Art of Deception 
 



Practical Principles for Computer Security B. W. Lampson  2 August 2006 94 

 

 


