Resilient Cyber Security and Privacy

Butler Lampson Microsoft Research Cyberforum April 7, 2015

Security: What we know how to do

- Secure something simple very well
 Protect complexity by isolation and sanitization
- Stage security theatre

What we **don't** know how to do

- Make something complex secure
- Make something big secure
 - Keep something secure when it changes
 - "When it comes to security, a change is unlikely to be an improvement." —Doug McIlroy
 - Get users to make judgments about security

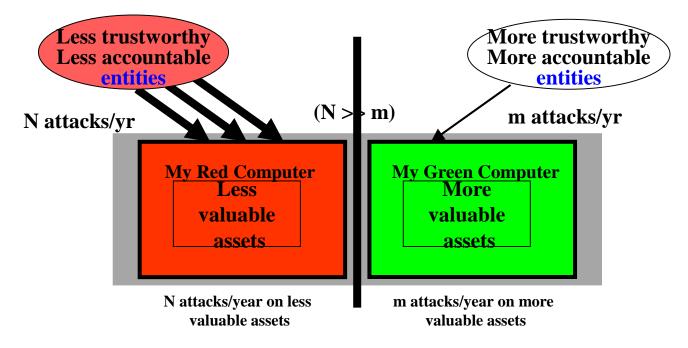
Lots of hype

- Not much hard evidence of actual harm
 - □ As opposed to scare stories and uneasiness
 - □ Ex: Scale of identity theft, losses from cybercrime
- Most numbers come from interested parties
 - □ who are in business to sell you security stuff
- Rarely, we see business decisions backed by data
 - Verifying credit card transactions
 - Most costs are in prevention, not in harm

Approaches to rational security

- Limited aspirations
 - □ In the real world, good security means a bank vault
 - There's nothing like this in most computer systems
 - □ Requires setting priorities—what's *really* important
- Retroactive security
 - □ React, don't anticipate—work on actual problems
 - Deterrence and undo rather than prevention
 - Deterrence needs punishment
 - Punishment needs accountability

Deterrence, punishment, accountability


- Real world security is retroactive, about deterrence, not about locks
- On the net, can't find bad guys, so can't deter them
- Fix? End nodes enforce **accountability**
 - □ Refuse messages that aren't accountable enough
 - or strongly isolate those messages
 - □ Senders are accountable if you can **punish** them
 - With dollars, ostracism, firing, jail, ...

All trust is local

Limiting aspirations: Red | Green

Partition world into two parts:

- □ Green: More safe/accountable
- □ Red : Less safe/unaccountable
- Green world needs professional management

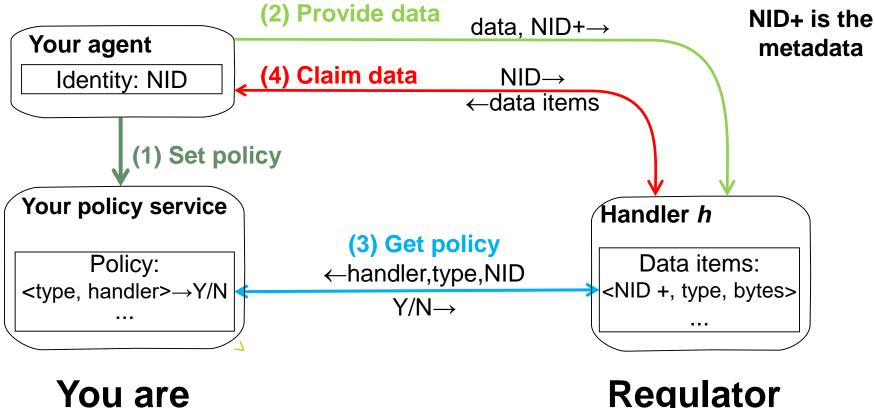
What about bugs? Control inputs

- Bugs will always subvert security
 - Can't get rid of bugs in full-function systems
 - There's too much code, changing too fast
 - Timeliness and functionality trump security
 - A bug is only dangerous if it gets tickled
 - So keep the bugs from getting tickled
 - Bugs get tickled by inputs to the program
 - □ So refuse dangerous inputs
 - or strongly isolate or sanitize those inputs
- To control possible inputs, isolate the program
 - □ Airgap, VM, process isolation, sandbox

Privacy: Personal control of data

- You are empowered to **control** your data
 - **Find** it, limit its **use**, **claim** it
 - **Everywhere**—Across the whole internet
 - Anytime, not just when it's collected
 - **Consistently** for all data handlers and devices
 - □ Remaining **anonymous** if you wish

Personal control of data: Mechanisms


Ideal: All your data is in a vault you control

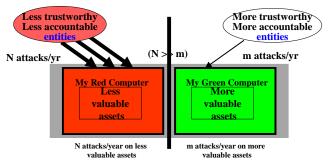
- □ I bring you a query
- □ If you like the query, you return a result
 - Otherwise you tell me to go away

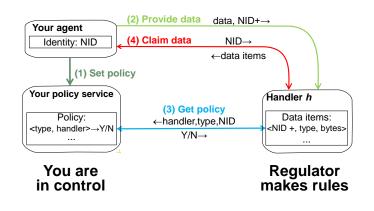
Practical: Data has **metadata** tag: link to policy

- □ Two kinds of players:
 - Agents you choose—like an email provider
 - Personal Agent on your device
 - Policy Service online
 - Data handlers, subject to regulation
 - Anyone who handles your data and follows the rules
 - Must fetch and obey your current policy

How it works

in control

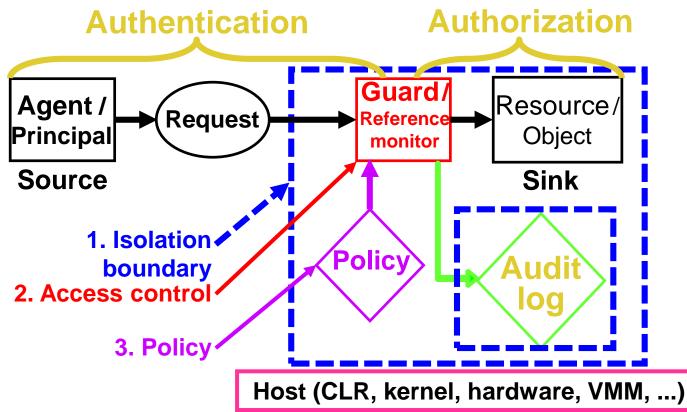

Regulator makes rules


Policy

Data-centric, not device or service centric □ Metadata stays with the data, points to data's policy Standard policy is very simple \Box 7 ± 2 types of data: contact, location, transaction, ... Can extend a type with an optional tree of subtypes **Basic policy**: handler h can/can't use data type t **One screen** shows most policies (in big type) **Templates** (from 3rd parties) + your exceptions Encode complex policy in **apps** □ An app is a handler that tags its output suitably

Conclusions

- Rational security
 - □ Limited aspirations
 - Red | Green
 - □ Retroactive security
 - React—work on actual problems
 - Deterrence and undo over prevention
- Personal control of data
 - Data tagged with metadata: a link to your policy
 - □ Handlers must obey policy



Backup

Access Control

- **1. Isolation boundary** limits attacks to channels (no bugs)
- 2. Access Control for channel traffic
- 3. Policy management

Incentives

Perceived threat of harm, or regulation

- □ Harm: loss of money or reputation
- □ For vendors, customer demand, which is weak
- Perception is based on past experience
 - □ not on possible futures
 - because too many things might go wrong
 - □ and you'll have a different job by then
- Regulation is a blunt instrument
 - □ slow, behind changing technology and threats
 - □ expensive
 - □ prone to unintended consequences.
 - □ But it can work. Ex: US state laws on PII disclosure

Are people irrational? No

Goals are unrealistic, ignoring:

- □ What is technically possible
- □ What users will actually do
- Conflicting desires for
 - security, anonymity, convenience, features
- Actual damage is small
 - Evidence of damage is weak
 - Hence not much customer demand
- Incentives are lacking
 - Experience trumps imagination
 - Convenience trumps security
 - □ Externalites: who benefits \neq who pays

What is technically possible?

- Security requires simplicity
- Most processes add complexity
 - □ SSL/TLS recently discovered bugs
 - □ EMV chip-and-PIN system
 - Windows printing system
 - □ SET "standard" for internet credit card transactions
 - "Too complex" is a judgment call
 - □ Why? No good metrics for complexity or security
 - □ So desire outruns performance

What will users actually do?

- What gets the job done
 - □ Disabling or evading security in the process
- What is easy
 - \square 2-factor auth for banking \rightarrow password + device
 - But in Norway, one time passwords for banking
- What works everywhere
 - □ For security, that's **nothing**
 - □ So "educating" users doesn't work
 - What solves a problem they (or a friend) actually had
 - *"If you want security, you must be prepared for inconvenience."* —Gen. Benjamin W. Chidlaw, 1954