
1

Retroactive Security

Schneider Symposium on Trustworthiness

Butler Lampson

Microsoft Research

December 5, 2013

Why Retroactive?

 Access control doesn’t work

 40 years of experience says so

 Basic problem: its job is to say “No”

▬ This stops people from doing their work

▬ and then they weaken the access control

▬ usually too much, but no one notices

▬ until there’s a disaster

 Retroactive security focuses on things that actually

happened

 rather than all the many things that might happen

27 January 2016 2Lampson: Retroactive Security

Why Retroactive?

 Real world security is retroactive

 Burglars are stopped by fear of jail, not by locks

 The financial system’s security depends on undo, not

on vaults

 Basic advantage: work on real, not hypothetical cases

 The best is the enemy of the good

 Retroactive security is not perfect

 But it’s better than what we have now

27 January 2016 3Lampson: Retroactive Security

Access Control

1. Isolation boundary limits attacks to channels (no bugs)

2. Access Control for channel traffic

3. Policy management

Resource
/ Object

Guard /
Reference

monitor
Request

Agent /

Principal

Authorization

Audit
log

Authentication

1. Isolation

boundary
2. Access control

Policy

3. Policy

SinkSource

Host (CLR, kernel, hardware, VMM, ...)

4
27 January 2016 Lampson: Retroactive Security

Aspects of Retroactive Security

 What about enforcing rules? Blame and

punishment

 Assigning blame? Auditing

 Imposing punishment? Accountability

 What about integrity? Selective undo

 What about secrecy? Undo publication

 What about bugs? Accountability and isolation

 What about freedom? Red/Green

527 January 2016 Lampson: Retroactive Security

What About Punishment? Accountability

 Real world security is about deterrence, not locks

 On the net, can’t find bad guys, so can’t deter them

 Fix? End nodes enforce accountability
 Refuse messages that aren’t accountable enough

▬ or strongly isolate those messages

 Senders are accountable if you can punish them
▬ With dollars, ostracism, firing, jail, ...

All trust is local

627 January 2016 Lampson: Retroactive Security

What About Blame? Auditing

 Use access control just to keep out people you

can’t punish

 End nodes enforce accountability

 Otherwise

 Make common sense rules

 Let people override the machine’s enforcement

 Log all accesses: who and what

 For problems you notice, use the log to find culprits

 Mine the record for unusual behavior, esp. overrides

 Needs authentication, and admin-friendly audit log

27 January 2016 7Lampson: Retroactive Security

What About Integrity? Selective Undo

 A better form of “reinstall &reload from backup”

 Log all state changes, their inputs and their outputs

 To fix a corrupted system:

 Reset the system to an old good state

 Install patches and block known intrusions

 Replay the logged actions (except the blocked ones)

▬ Unchanged actions with unchanged inputs don’t need replay

 This doesn’t always work, but it often does

 Sometimes it needs user advice to resolve conflicts

 Kaashoek, Zeldovich et al
27 January 2016 8Lampson: Retroactive Security

What About Secrecy? Undo Publication

 How to stop the Internet from remembering

forever

 When you post something, tag it as yours

 Well-behaved apps and services respect the tags.

 Carry the tag along with the data

 Consult the current policy for the tag

 To take something back, change the policy

 Enforcement by social norms or regulation

 Works for Google, Facebook, MS Office, etc.

▬ Of course doesn’t work for everything

27 January 2016 9Lampson: Retroactive Security

Ownership Tags

 Enough information to find the current policy

 URL or search query for source of policy

 HTTP request to retrieve policy

 Public signing key to authenticate policy

 Current policy?

 Cache retrieved policy

 Check for changes—perhaps once per day or once per

week

 Need the tag to last for decades

1027 January 2016 Lampson: Retroactive Security

Ownership for Medical Data

 Same idea: tag data with patient identity

 Patient controls use of data

 Who gets to see it

 How it can be used in research

 Question: Can you take data back even after it’s

been used?

 See PITAC report on Health IT

1127 January 2016 Lampson: Retroactive Security

From Ownership To Provenance

 Provenance: How this data came into being

 Input, with owner(s)

 Computed, by f(x1, x2, ...)

 Trace the chain of responsibility / ownership

 Recompute when inputs or program change

 Problems:

 Cost

 Process

 Non-determinism
1227 January 2016 Lampson: Retroactive Security

What About Bugs? Control Inputs

 Bugs will always subvert access control
 Can’t get rid of bugs in full-function systems

▬ There’s too much code, changing too fast

▬ Timeliness and functionality are more important than

security

 A bug is only dangerous if it gets tickled
 So keep the bugs from getting tickled

 Bugs get tickled by inputs to the program

 So refuse dangerous inputs
▬ or strongly isolate those inputs

 To control possible inputs, isolate the program
▬ VM, Drawbridge, process isolation, runtime or browser

sandbox
1327 January 2016 Lampson: Retroactive Security

Stopping Dangerous Inputs: Accountability

 Inputs from accountable senders are safer
 Senders are accountable if you can punish them

▬ With dollars, ostracism, firing, jail, ...

 Accountability deters senders from tickling bugs

 Bad guys are not accountable

 So keep bad guys from tickling the bugs
 Refuse inputs that aren’t accountable enough

▬ or strongly isolate those inputs

 End nodes enforce accountability

 Need all the machinery of authentication and isolation

▬ But coarse grained

1427 January 2016 Lampson: Retroactive Security

What About Compromise?

 Stuff happens, so good guys can be compromised

 Though less likely with accountability

 Need careful management of accountable machines

 Second line of defense: Sanitizing

 For each data type, define a safe subset

 A sanitizer forces a value to be safe

 Only accept safe inputs

1527 January 2016 Lampson: Retroactive Security

16

 Partition world into two parts:

 Green: More safe/accountable

 Red : Less safe/unaccountable

 Green world needs professional management

What About Freedom? Red/Green

27 January 2016 Lampson: Retroactive Security

Less

valuable

assets

My Red Computer

N attacks/year on less

valuable assets

More

valuable

assets

My Green Computer
More

valuable

assets

m attacks/year on more

valuable assets

N attacks/yr m attacks/yr(N >> m)

Less trustworthy
Less accountable

entities

More trustworthy
More accountable

entities

17

Why R|G?

 Problems:
 Any OS will always be exploitable

▬ The richer the OS, the more bugs

 Need internet access to get work done, have fun
▬ The internet is full of bad guys

 Solution: Isolated work environments:
 Green: important assets, only talk to good guys

▬ Don’t tickle the bugs, by restricting inputs
 Red: less important assets, talk to anybody

▬ Blow away broken systems

 Good guys: more trustworthy / accountable
 Bad guys: less trustworthy or less accountable

27 January 2016 Lampson: Retroactive Security

18

Data Transfer

 Mediates data transfer between machines
 Drag / drop, Cut / paste, Shared folders

 Problems
 Red → Green : Malware entering

 Green → Red : Information leaking

 Possible policy
 Allowed transfers (configurable). Examples:

▬ No transfer of “.exe” from R to G

▬ Only transfer ASCII text from R to G

 Non-spoofable user intent; warning dialogs

 Auditing
▬ Synchronous virus checker; third party hooks, ...

27 January 2016 Lampson: Retroactive Security

Conclusions

 Access control hasn’t worked. Learn from real-world

experience.

 Security should depend mostly on retroactive, after-the-

fact response

 Work on actual problems, not hypothetical ones

 For blame and punishment: auditing and accountability

 For integrity: selective undo

 For secrecy: ownership of published data and provenance

 For bugs: isolation, accountable inputs, and red/green

27 January 2016 19Lampson: Retroactive Security

