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Outline 

Introduction: what is security? 
Principals, the “speaks for” relation, and chains of 
responsibility 
Secure channels and encryption 
Names and groups 
Authenticating systems 
Authorization 
Implementation 
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REAL-WORLD SECURITY 

It’s about value, locks, and punishment.  
− Locks good enough that bad guys don’t break in 

very often. 
− Police and courts good enough that bad guys that do 

break in get caught and punished often enough. 
− Less interference with daily life than value of loss.  

 
Security is expensive—buy only what you need. 

− People do behave this way 
− We don’t tell them this—a big mistake 
− Perfect security is the worst enemy of real security 
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Elements of Security 

Policy: Specifying security 
 What is it supposed to do?  
Mechanism: Implementing security 
 How does it do it?  
Assurance: Correctness of security 
 Does it really work?  
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Abstract Goals for Security 

Secrecy controlling who gets to read information 
Integrity controlling how information changes or 

resources are used 
Availability providing prompt access to information 

and resources 
Accountability knowing who has had access to 

information or resources 
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Dangers  
Dangers 
Vandalism or sabotage that  

– damages information integrity  
– disrupts service availability 

Theft of money integrity 
Theft of information secrecy 
Loss of privacy secrecy 
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Vulnerabilities 
 

Vulnerabilities 
– Bad (buggy or hostile) programs 
– Bad (careless or hostile) people  

giving instructions to good programs 
– Bad guys corrupting or eavesdropping on 

communications 
Threats 

– Adversaries that can and want to exploit 
vulnerabilities 
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Defensive strategies 

Coarse: Isolate—Keep everybody out  
– Disconnect 

Medium: Exclude—Keep the bad guys out 
– Code signing, firewalls 

Fine: Restrict—Let the bad guys in, but keep them from 
doing damage 

– Hardest to implement 
– Sandboxing, access control 

Recover—Undo the damage. Helps with integrity. 
– Backup systems, restore points 

Punish—Catch the bad guys and prosecute them 
– Auditing, police 
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Assurance 

Trusted Computing Base (TCB) 
– Everything that security depends on 
– Must get it right 
– Keep it small and simple 

Elements of TCB  
– Hardware 
– Software 
– Configuration 

Defense in depth 
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Assurance: Defense in Depth 

Network, with a firewall 
Operating system, with sandboxing 

– Basic OS (such as NT) 
– Higher-level OS (such as Java) 

Application that checks authorization directly 
 
All need authentication 
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TCB Examples 

Policy: Only outgoing Web access 
TCB: firewall allowing outgoing port 80 TCP 
connections, but no other traffic  

Hardware, software, and configuration 
 

Policy: Unix users can read system directories, and read 
and write their home directories 
TCB: hardware, Unix kernel, any program that can write 
a system directory (including any that runs as superuser). 

Also /etc/passwd, permissions on all directories. 



Security in Distributed Systems B. W. Lampson  4 January 2005 12 

TCB: Configuration 

Done again for each system, unlike HW or SW 
– New chance for mistakes each time 

Done by amateurs, not experts 
– No learning from experience 
– Little training 

 
Needs to be very simple 

– At the price of flexibility, fine granularity 
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Making Configuration Simple 

Users—keep it simple 
– At most three levels: self, friends, others 

Three places to put objects 
– Everything else done automatically with policies 

Administrators—keep it simple 
– Work by defining policies. Examples: 

Each user has a private home folder 
Each user in one workgroup with a private folder 
System folders contain vendor-approved releases 
All executable programs signed by a trusted party 

Today’s systems don’t support this very well 
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Assurance: Configuration Control 

It’s 2 am. Do you know what software is running on your 
machine? 
Secure configuration ⇒ some apps don’t run 

– Hence must be optional: “Secure my system” 
– Usually used only in an emergency 

Affects the entire configuration 
– Software: apps, drivers, macros 
– Access control: shares, authentication 

Also need configuration audit 
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Why We Don’t Have “Real” Security 

A. People don’t buy it 
– Danger is small, so it’s OK to buy features instead. 
– Security is expensive. 

Configuring security is a lot of work. 
Secure systems do less because they’re older. 

– Security is a pain.  
It stops you from doing things. 
Users have to authenticate themselves. 

 

B. Systems are complicated, so they have bugs. 
– Especially the configuration 
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“Principles” for Security 

Security is not formal 
Security is not free  
Security is fractal  
 
Abstraction can’t keep secrets 

– “Covert channels” leak them  
 
It’s all about lattices  
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ELEMENTS OF SECURITY 

Policy: Specifying security 
 What is it supposed to do?  
Mechanism: Implementing security 
 How does it do it?  
Assurance: Correctness of security 
 Does it really work?  
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Specify: Policies and Models 

Policy  — specifies the whole system informally. 
Secrecy Who can read information? 
Integrity Who can change things, and how? 
Availability  How prompt is the service? 

Model—specifies just the computer system, but does so 
precisely. 

Access control model guards control access  
to resources. 

Information flow model classify information, 
prevent disclosure. 
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Implement: Mechanisms and Assurance 

Mechanisms — tools for implementation. 
Authentication Who said it? 
Authorization Who is trusted? 
Auditing  What happened? 

Trusted computing base. 
Keep it small and simple. 
Validate each component carefully. 
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 Information flow model 
(Mandatory security) 

A lattice of labels for data: 
– unclassified < secret < top secret;  
– public < personal < medical < financial 

label( f (x)) = max(label( f ), label(x)) 
Labels can keep track of data properties:  

– how secret  Secrecy   
– how trustworthy Integrity  

When you use (release or act on) the data, user needs a ≥ 
clearance  
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Access Control Model 

Guards control access to valued resources. 
 
 
 
 
 

Reference 
monitor ObjectDo 

operation

Resource

Principal 

Guard RequestSource 

Audit 
log 

Authentication Authorization
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Access Control 

Guards control access to valued resources. 
Structure the system as — 

Objects entities with state. 
Principals can request operations  
 on objects. 
Operations how subjects read or change objects. 

 

Reference 
monitor Object

Do 
operation

Resource

Principal

Guard RequestSource

Audit 
log 

Authentication Authorization
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Access Control Rules 

Rules control the operations allowed 
for each principal and object. 
 

Principal may do Operation      on Object 
Taylor Read File “Raises” 
Lampson Send “Hello” Terminal 23 
Process 1274 Rewind Tape unit 7 
Schwarzkopf Fire three shots Bow gun 

Jones Pay invoice 432 Account Q34 
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Mechanisms—The Gold Standard 

Authenticating principals 
− Mainly people, but also channels, servers, programs 

(encryption makes channels, so key is a principal) 
Authorizing access 

− Usually for groups, principals that have some 
property, such as “Microsoft employee” or “type-
safe” or “safe for scripting” 

Auditing 
 
Assurance 

– Trusted computing base  
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Standard Operating System Security 

Assume secure channel from user (without proof) 
Authenticate user by local password 

– Assign local user and group SIDs 
Access control by ACLs: lists of SIDs and permissions 

– Reference monitor is the OS, or any RPC target 
Domains: same, but authenticate by RPC to controller 
Web servers: same, but simplified 

– Establish secure channel with SSL 
– Authenticate user by local password (or certificate) 
– ACL on right to enter, or on user’s private state 
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NT Domain Security 

Just like OS except for authentication 
OS does RPC to domain for authentication 

– Secure channel to domain 
– Just do RPC(user, password) to get user’s SIDs 

Domain may do RPC to foreign domain 
– Pairwise trust and pairwise secure channels 
– SIDs include domain ID, so a domain can only 

authenticate its own SIDs 
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Web Security Today 

Server: Simplified from single OS 
– Establish secure channel with SSL 
– Authenticate user by local password (or certificate) 
– ACL on right to enter, or on user’s private state 

Browser (client): Basic authentication 
– Of server by DNS lookup, or by SSL + certificate 
– Of programs by supplier’s signature 

Good programs run as user 
Bad ones rejected or totally sandboxed 
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END-TO-END EXAMPLE 

Alice is at Intel, working on Atom, a joint Intel-
Microsoft project 
Alice connects to Spectra, Atom’s web page, with SSL 

 

says 

 

KSSL   

says   
says 

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel  

KAlice   
Spectra

ACL   
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Chain of responsibility 

Alice at Intel, working on Atom, connects to Spectra, 
Atom’s web page, with SSL 
Chain of responsibility:  
 KSSL ⇒ Ktemp ⇒ KAlice  
 ⇒ Alice@Intel ⇒ Atom@Microsoft  ⇒ Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   
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Principals 

Authentication: Who sent a message? 
Authorization: Who is trusted? 
Principal — abstraction of “who”: 

People Lampson, Taylor 
Machines VaxSN12648, Jumbo 
Services SRC-NFS, X-server 
Groups SRC, DEC-Employees 
Roles Taylor as    Manager 
Joint authority Taylor and Lampson 
Weakening Taylor or     UntrustedProgram 
Channels Key #7438 
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Theory of Principals 

Principal says statement P says s  
Lampson says “read /SRC/Lampson/foo” 
SRC-CA says “Lampson’s key is #7438” 
Axioms 

If A says s and A says (s implies s') then A says s' 
If A = B then (A says s) = (B says s) 
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The “Speaks for” Relation  ⇒ 

Principal A speaks for B about T A ⇒T B  
If A says something in set T, B does too:  
Thus, A is stronger than B, or responsible for B, about T 

Precisely: (A says s) ∧ (s ∈ T) implies (B says s) 
These are the links in the chain of responsibility 
Examples 

Alice ⇒ Atom group of people 
Key #7438 ⇒ Alice key for Alice 
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Delegating Authority 

How do we establish a link in the chain: a fact Q ⇒ R 
The “verifier” of the link must see evidence, of the form 

“P  says Q ⇒ R” 
There are three questions about this evidence 

– How do we know that P says the delegation? 
– Why do we trust P for this delegation? 
– Why is P willing to say it? 
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How Do We Know P says X? 

If P is then 
a key P signs X cryptographically 
some other channel message X arrives on channel P 
the verifier itself X is an entry in a local database 
These are the only ways that the verifier can directly 
know who said something: receive it on a secure channel 
or store it locally 
Otherwise we need C ⇒ P, where C is one of these cases 

– Get this by recursion 
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Why Do We Trust The Delegation? 

We trust A to delegate its own authority. 
Delegation rule: If P  says Q ⇒ R then Q ⇒ R 

Reasonable if P is competent and accessible. 
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Why Is P Willing To Delegate To Q?  

Some facts are installed manually  
– KIntel ⇒ Intel, when Intel and Microsoft establish a 

direct relationship  
– The ACL entry Lampson ⇒ usr/Lampson 

Others follow from the properties of some algorithm  
– If Diffie-Hellman yields KDH, then I can say  

“KDH ⇒ me, provided  
You are the other end of the KDH run   
You don’t disclose KDH to anyone else 
You don’t use KDH to send anything yourself.”  

In practice I simply sign KDH ⇒ Kme 
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Why Is P Willing To Delegate To Q?  

Others follow from the properties of some algorithm  
– If server S starts process P from and sets up a 

channel C from P, it can say C ⇒ SQLv71 

Of course, only someone who believes S ⇒ SQLv71 
will believe this 
To be conservative, S might compute a strong hash 
HSQLv71 of SQLv71.exe and require  

Microsoft says “HSQLv71 ⇒ SQLv71”  
before authenticating C 
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Chain of responsibility 

Alice at Intel, working on Atom, connects to Spectra, 
Atom’s web page, with SSL 
Chain of responsibility:  
 KSSL ⇒ Ktemp ⇒ KAlice  
 ⇒ Alice@Intel ⇒ Atom@Microsoft  ⇒ Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   
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Authenticating Channels 

Chain of responsibility:  
KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒ ... 

Ktemp says  KAlice says     
(SSL setup) (via smart card)     

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page 

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   
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Authenticating Names: SDSI 

A name is in a name space, defined by a principal P 
– P is like a directory. The root principals are keys.  

Rule: P speaks for any name in its name space 
KIntel ⇒ Intel ⇒ Intel/Alice   (= Alice@Intel) 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   Spectra
ACL   
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Authenticating Names 

KIntel ⇒ Intel ⇒ Intel/Alice   (= Alice@Intel) 
Ktemp ⇒ KAlice ⇒ Alice@Intel⇒ ...

 KIntel says   

 

says 

 

KSSL   

says   
says 

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   
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Authenticating Groups 

A group is a principal; its members speak for it 
– Alice@Intel ⇒ Atom@Microsoft 
– Bob@Microsoft ⇒ Atom@Microsoft 
– … 

Evidence for groups: Just like names and keys. 
KMicrosoft ⇒ Microsoft ⇒ Microsoft/Atom  
 (= Atom@Microsoft) 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   
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Authenticating Groups 

KMicrosoft ⇒ Microsoft ⇒ Atom@Microsoft 

... ⇒ KAlice ⇒Alice@Intel ⇒ Atom@Microsoft⇒ ... 

  KMicrosoft says   

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   Spectra
ACL   
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Authorization with ACLs 

View a resource object O as a principal 
P on O’s ACL means P can speak for O 

– Permissions limit the set of things P can say for O 
If Spectra’s ACL says Atom can r/w, that means 

Spectra says Atom@Microsoft ⇒r/w Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   
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Authorization with ACLs 

Spectra’s ACL says Atom can r/w 

...⇒ Alice@Intel ⇒ Atom@Microsoft⇒r/w Spectra 

  Spectra says  

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   Spectra
ACL   



Security in Distributed Systems B. W. Lampson  4 January 2005 46 

End-to-End Example: Summary 

Request on SSL channel: KSSL says “read Spectra” 
Chain of responsibility:  
 KSSL ⇒ Ktemp ⇒ KAlice  
 ⇒ Alice@Intel ⇒ Atom@Microsoft  ⇒ Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   
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Compatibility with Local OS? 

(1) Put network principals on OS ACLs 
(2) Let network principal speak for local one 

– Alice@Intel ⇒ Alice@microsoft 
– Use network authentication  

replacing local or domain authentication 
– Users and ACLs stay the same 

(3) Assign SIDs to network principals 
– Do this automatically 
– Use network authentication as before 
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Summaries 

The chain of responsibility can be long 
Ktemp says KSSL ⇒ Ktemp 
KAlice says Ktemp ⇒ KAlice 
KIntel says KAlice ⇒ Alice@Intel 
KMicrosoft says Alice@Intel ⇒ Atom@Microsoft 
Spectra says Atom@Microsoft ⇒r/w Spectra 

Can replace a long chain with one summary certificate  
Spectra says KSSL ⇒r/w Spectra  

Need a principal who speaks for the end of the chain 
This is often called a capability  
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Lattice of Principals 

A and B  max, least upper bound 
(A and B) says s ≡ (A says s) and (B says s) 

A  or   B  min, greatest lower bound 
(A  or   B) says s ≡ (A says s)  or  (B says s) 

Now A ⇒ B ≡ ( A = A and B ) ≡ ( B = A or B ) 
Thus ⇒ is the lattice’s partial order 
 
Could we interpret this as sets? Not easily: and is not 
intersection 
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Facts about Principals 

A = B is equivalent to (A ⇒ B) and (B ⇒ A) 
⇒ is transitive 
and, or are associative, commutative, and idempotent 
and, or are monotonic: 

If A' ⇒ A then (A' and B) ⇒ (A and B) 
 (A'  or   B) ⇒ (A  or  B) 
Important because a principal may be stronger than 
needed 
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Lattices: Information Flow to Principals 

A lattice of labels: 
– unclassified < secret < top secret;  
– public < personal < medical < financial 

Use the same labels as principals, and let ⇒ represent 
clearance 

– lampson ⇒ secret  
Or, use names rooted in principals as labels 

– lampson/personal, lampson/medical 
Then the principal can declassify 
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SECURE CHANNELS 

A secure channel: 
• says things directly C says s  
• has known possible receivers secrecy 
 possible senders integrity  
• if P is the only possible sender, then C  ⇒ P  

Examples 
Within a node: operating system (pipes, etc.) 
Between nodes:  

Secure wire difficult to implement 
Network fantasy for most networks 
Encryption practical 



Security in Distributed Systems B. W. Lampson  4 January 2005 53 

Names for Channels 

A channel needs a name to be authenticated properly 
– KAlice says Ktemp ⇒ KAlice 

It’s not OK to have 
– KAlice says “this channel ⇒ KAlice” 

unless you trust the receiver not to send this on another 
channel! 

– Thus it is OK to authenticate yourself by sending a 
password to amazon.com on an SSL channel already 
authenticated (by a Verisign certificate) as going to 
Amazon. 
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Multiplexing a Channel 

Connect n channels A, B, ... to one channel X to make n 
new sub-channels X|A, X|B, ...  Each subchannel has its 
own address on X 
The multiplexer must be trusted 

A

B

C

MA

MB

MC

B, MB

A, MA

X
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Quoting 

 A | B  A quoting B 
A | B says s ≡ A says (B says s)  
 

Axioms 
| is associative 
| distributes over and, or 
A ⇒*⇒A|B A | B 
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Multiplexing a Channel: Examples 
 

Multiplexer Main 
channel 

Subchannels Address 

OS node–node process–
process  

port or 
process ID  

Network 
routing  

node–
network  

node–node  node address  
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Signed Secure Channels 

The channel is defined by the key: If only A knows K–1, 
then K ⇒ A (Actually, if only A uses K–1, then K ⇒ A) 
K says s is a message which K can verify 

 
The bits of “K says s” can travel on any path 

s 
Sign(K-1, s) }K says s

K says s{ Verify(K, s)
s

OK?
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Abstract Cryptography: Sign/Verify 

Verify(K, M, sig) = true iff sig = Sign(K', M) and K' = K-1 
– Is sig K’s signature on M? 

Concretely, with RSA public key: 
– Sign(K-1, M) = RSAencrypt(K-1, SHA1(M)) 
– Verify(K, M, sig) = (SHA1(M) = RSAdecrypt(K, sig)) 

Concretely, with AES shared key: 
– Sign(K, M)  =  SHA1(K, SHA1(K || M)) 
– Verify(K, M, sig) = ( SHA1(K, SHA1(K || M)) = sig) 

 
Concrete crypto is for experts only! 
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Abstract Cryptography: Seal/Unseal 

Unseal(K-1, Seal(K, M)) = M, and without K-1 you can’t 
learn anything about M from Seal(K, M) 

Concretely, with RSA public key: 
– Seal(K, M) = RSAencrypt(K-1, IV || M) 
– Unseal(K, Msealed)  = RSAdecrypt(K, M sealed).M 

Concretely, with AES shared key: 
– Seal(K, M) =  AESencrypt(K, IV || M) 
– Unseal(K, M sealed) = AESdecrypt(K, M sealed).M 

 
Concrete crypto is for experts only! 
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Sign and Seal 

Normally when sealing must sign as well!  
– Seal(Kseal

-1, M || Sign(K sign
-1, M)) 

Often Sign is replaced with a checksum ??? 
Concrete crypto is for experts only! 

Encrypt 
with K

Decrypt
with K

s

Checksum

K says s

OK

Checksum

K says s 

–1

s

=
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Public Key vs. Shared Key 
Public key: K ≠ K-1 

– Broadcast 
– Slow 
– Non-repudiable (only one possible sender) 
– Used for certificates 

Key ⇒ name: KIntel says KAlice ⇒ Alice@Intel 
Temp key ⇒ key: Ktemp says KSSL ⇒ Ktemp 
 KAlice says Ktemp ⇒ KAlice 

Shared key: K = K-1 
– Point to point 
– Fast 

Can simulate public key with trusted on-line server 
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How Fast is Encryption? 

    Use Notes 
RSA encrypt  5 ms (25 KB/s) sign 1000 bit modulus 
RSA decrypt  0.2 ms (625 KB/s) verify Exponent=17 
SHA-1 70 MBytes/s sign HMAC 
AES 50 MBytes/s seal 256 bit key 
 
On 2 GHz Pentium, Microsoft Visual C++. Data from 
Wei Dai at www.cryptopp.com 
Might be 2x faster with careful optimization 
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Fast Encryption in Practice 

Want to run at network speed. 
How? Put encryption into the data path. 

Network interface parses the packet to find a  
key identifier and maps it to a key for decryption 
Parsing depends on network protocol (e.g., TCP/IP) 

header

key id K

Encrypt(K, body)

parse
net-
work host

header

K

body

Encrypted 
packet

Network
interface

Decrypted
packet

key id→ key

Decrypt(    ,    )

r r
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Messages on Encrypted Channels 

If K says s, we say that s is signed by K 
Sometimes we call “K says s” a certificate 

The channel isn’t real-time: K says s is just bits 
K says s can be viewed as 

• An event: s transmitted on channel K 
• A pile of bits which makes sense if you know the 

decryption key 
• A logical formula 
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Messages vs. Meaning 

Standard notation for Seal(Kseal
-1, M || Sign(K sign

-1, M)) is 
{M}K. This does not give the meaning 
Must parse message bits to get the meaning 

– Need unambiguous language for all K’s messages 
– In practice, this implies version numbers  

Meaning could be a logical formula, or English 
– A, B, {K}KCA means C says (to A) “K is a key”. C 

says nothing about A and B. This is useless 
– {A, B, K}KCA means C says “K is a key for A to talk 

to B”. C says nothing about when K is valid 
– {A, B, K, T}KCA means C says “K is a key for A to 

talk to B first issued at time T” 
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Replay 

Encryption doesn’t stop replay of messages. 
Receiver must discard duplicates. 
This means each message must be unique. 
 Usually done with sequence numbers. 
Receiver must remember last sequence number while 
the key is valid. 

Transport protocols solve the same problem. 
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Timeliness  

Must especially protect authentication against replay 
If C says KA ⇒ A to B and Eve records this, she can get 
B to believe in KA just by replaying C’s message. 

Now she can replay A’s commands to B. 
If she ever learns KA, even much later, she can 
also impersonate A. 

To avoid this, B needs a way to know that C’s message 
is not old. 

Sequence numbers impractical—too much long-
term state. 
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Timestamps and Nonces  

Timestamps 
With synchronized clocks, C just adds the time T, 
saying to B 

KC says KA ⇒ A at T 
Nonces 

Otherwise, B tells C a nonce NB which is new, and C 
sends to B 

KC says KA ⇒ A after NB  
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NAMES FOR PRINCIPALS 

Authorization is to named principals. Users have to read 
these to check them. 
Lampson may read file report 

Root names must be defined locally 
 KIntel ⇒ Intel 

From a root you can build a path name 
Intel/Alice   (= Alice@Intel) 

With a suitable root principals can have global names. 
/DEC/SRC/Lampson may read file  
/DEC/SRC/udir/Lampson/report 
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Authenticating Names 

KIntel ⇒ Intel ⇒ Intel/Alice   (= Alice@Intel) 
Ktemp ⇒ KAlice ⇒ Alice@Intel⇒ ...

 KIntel says   

 

says 

 

KSSL   

says   
says 

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   



Security in Distributed Systems B. W. Lampson  4 January 2005 71 

Authenticating a Channel 

Authentication — who can send on a channel. 
C ⇒ P; C is the channel, P the sender. 

Initialization — some such facts are built in: Kca  ⇒ CA. 
To get new ones, must trust some principal, a 
certification authority. 

Simplest: trust CA to authenticate any name: 
 CA ⇒ Anybody  

Then CA can authenticate channels: 
Kca   says Kws  ⇒ WS 
Kca   says Kbwl  ⇒ bwl 
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One-Way Authentication 

CA

A

,              Kb⇒B

,  Kca ⇒ CA
CA ⇒ Anybody

CA says  Kb⇒B 
Kb ⇒ B

CA knows

A learns

A knows

Kca says Kb ⇒ B 

Kca
-1

Ka
-1

Certificates
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Mutual Authentication 

CA

A B

,  Ka⇒A,  Kb⇒B

,  Kca ⇒ CA
CA ⇒ Anybody

CA says  Kb⇒B 
Kb ⇒ B

CA knows

A learns

A knows

Kca says Kb ⇒ B Kca says Ka ⇒ A 

Kca
-1

Kb
-1

Ka
-1 ,  Kca ⇒ CA

CA ⇒ Anybody

CA says  Ka⇒A 
Ka ⇒ A

B learns

B knows

Certificates

 

This also works with shared keys, as in Kerberos. 
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Who Is The CA 

“Built In” 
CA’s in browsers 

– There are lots 
– Because of politics 
– Look at Tools / Internet options / 
Content / Publishers /  
Trusted root certification authorities 

This is a configuration problem 
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Revocation 

Revoke a certificate by making the receiver think it’s 
invalid. 
To do this fast, the source of certificates must be online. 

This loses a major advantage of public keys, and 
reduces security. 

Solution: countersigning — 
An offline CAassert, highly secure. 
An online CArevoke, highly timely. 
Both must sign for the certificate to be believed, i.e., 

CAassert and CArevoke ⇒ Anybody  
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Large-Scale Authentication 

A large system can’t have CA ⇒ Anybody. 
Instead, must have many CA's, one for each part. 

One natural way is based on a naming hierarchy: 
A tree of directories with principals as the leaves 

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21
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Large-Scale Authentication: Example 
Keep trust as local as possible: 
Authenticating A to B needs trust only up to  
least common ancestor  

dec  for /dec/lampson → /dec/abadi 
root for /dec/lampson → /mit/clark 

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

 



Security in Distributed Systems B. W. Lampson  4 January 2005 78 

Rules for Path Names 

New operator except: 
Informally, P except M can speak for P / N as long as 
N ≠ M 

Axioms 
P except M ⇒ P   
(P except M) | N ⇒ P / N except ‘..’ if N ≠ M child 
(P / N except M) | ‘..’⇒ P except N if N ≠ ‘..’ parent 
 
Effect: Authentication can traverse the tree outward from 
the starting point, but can never retrace its steps 
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Rules for Path Names: Example 
Start with  Clampson ⇒ /dec/lampson except nil known 

Clampson says Cdec ⇒ /dec except lampson parent 
Cdec  says Croot ⇒ / except dec parent 
Croot  says Cmit ⇒ /mit except “..” child 
Cmit says Cclark ⇒ /mit/clark except “..” child 

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21
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Trusting Fewer Authorities: Cross-Links  

For less trust, add links to the tree 
Now lampson trusts only dec for 
  /dec/lampson → /dec/mit/clark 

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

mit
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Login 

Chain of responsibility:  
KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒ ... 

Ktemp says  KAlice says     
(SSL setup) (via smart card)     

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page 

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   
Spectra

ACL   
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Authenticating Users 

Goals 
Hide the secret that authenticates the user 
Authenticate without disclosing it 
Let a node N speak for the user:  N ⇒ Alice 

Method 
KAlice ⇒ Alice 
KAlice says N ⇒ Alice 
KAlice–1 is the user’s secret   

It can be stored encrypted by her password,  
or better, held inside a smart card. 
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Identifying Nodes for Login Delegation 

Usually a workstation has no permanent identity 
– Not true for servers 
– Workstation might have a “meets ITG policy” 

identity 
Need a temporary principal for Alice to delegate to at 
login 
Generate login session key Ktemp 
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User Credentials 

CA generates: 
– user key: KAlice–1  
– child certificate: KCA  says KAlice  ⇒ Alice 

Certificate is public 
Where to keep KAlice–1? 

– Smart card 
– Encrypted by password 
– On a server 
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Server-mediated Login 

Workstation talks to login server 
Server confining user’s presence 

– Password 
– One-time password 
– Time-varying password 
– Smart card 
– Biometrics 
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Two-factor Authentication 

Problems with passwords 
Advantages of physical “tokens” 
What if token is stolen? 
Combine token and something tied to user 

– Password / PIN 
– Biometrics 

Problem with passwords: exhaustive search 
Problems with biometrics: not secret, can’t change 
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Login with Node Identity 

Check Kca  says KAlice ⇒ Alice 
Generate Ktemp –1, a login session key. 
Delegate to session key K temp and node key Kn  

KAlice   says (Ktemp and Kn)  ⇒ KAlice    
Then the session key countersigns with a short timeout, 
say 30 minutes: 
 Ktemp says Kn  ⇒ Ktemp  
OS discards Ktemp –1 at logout, and the delegation expires 
within 30 minutes. 
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GROUPS and Group Credentials 

Defining groups: A group is a principal; its members 
speak for it 

Alice@Intel ⇒ Atom@Microsoft 
Bob@Microsoft ⇒ Atom@Microsoft 
. . . 

Proving group membership: Use certificates 
K Microsoft says Alice@Intel ⇒ Atom@Microsoft 
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Authenticating Groups 

KMicrosoft ⇒ Microsoft ⇒ Atom@Microsoft 

... ⇒ KAlice ⇒Alice@Intel ⇒ Atom@Microsoft⇒ ... 

  KMicrosoft says   

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft 

Intel   

KAlice   Spectra
ACL   



Security in Distributed Systems B. W. Lampson  4 January 2005 90 

What Is A Group 

Set of principals 
– Alice@Intel ⇒ Atom@Microsoft 

Principals with some property 
– Resident over 21 years old 
– Type-checked program 

Can think of the group (or property) as an attribute of 
each principal that is a member 
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Certifying Properties 

Need a trusted authority: CA ⇒ typesafe 

– Actually KMS says CA ⇒ KMS / typesafe 
Usually done manually 
Can also be done by a program P 

– A compiler 
– A class loader  
– A more general proof checker 

Logic is the same: P ⇒ typesafe 
– Someone must authorize the program: 
– KMS says P ⇒ KMS / typesafe 
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Groups As Parameters 

An application may have some “built-in” groups 
Example: In an enterprise app, each division has 

– groups: manager, employees, finance, marketing 
– folders: budget, advertising plans, ... 

Thus, the steel division is an instance of this, with 
– steelMgr, steelEmps, steelFinance, steelMarketing 
– folders: steelBudget, steelAdplans, ... 
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P and Q: Separation of Duty 

Often we want two authorities for something. 
A and B says s = (A says s) ∧ (B says s) 
We use a compound principal with and to express this: 

Lampson and Taylor two users 
Lampson and Ingres user running an application 
CAassert and CArevoke online and offline CAs 
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P or Q: Weakening 

Sometimes want to weaken a principal 
A or B says s = (A says s) ∨ (B says s) 

– A ∨ B says “read f ” needs both A⇒R f and B⇒R f  

– Example: Java rule—callee ⇒ caller ∨ callee-code 
– Example: NT restricted tokens—if process P is 

running untrusted-code for blampson then 
P ⇒ blampson ∨ untrusted-code 
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P as R: Roles 

To limit its authority, a principal can assume a role. 
People assume roles: Lampson as Professor 
Machines assume roles as nodes by running OS 
programs: Vax#1724 as BSD4.3a4 = Jumbo 
Nodes assume roles as servers by running services: 

Jumbo as SRC-NFS 
 

Metaphor: a role is a program 
Encoding: A as R ≡ A | R  if R is a role 
Axioms: A ⇒*⇒A|R A as R if R is a role  
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B for A:  Melding 

B for A:  B acting on behalf of A 
Workstation22 for Lampson 
Ingres for Lampson 

Axiom:  (A | B) and (B | A) ⇒ B for A  
To delegate — 

A offers: A | B says B | A ⇒ B for A 
B accepts: B | A says B | A ⇒ B for A 
Together: (A | B  and B | A) says B | A ⇒ B for A 
Final delegation:   B | A ⇒ B for A  
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Using a Meld 

Suppose the ACL for file foo says 
SRC-WS for Lampson may read “foo” 

If we know WS22 ⇒ SRC-WS  
then WS22 for Lampson may read “foo” 
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Meld Example: Login Credentials 
Get Kbwl–1 from Encrypt(PW, Kbwl–1) with user’s password 
Check Kca  says Kbwl  ⇒ bwl 
Offer meld to node key Kn: 

Kbwl | Kn   says  Kn ⇒ (Kws as Taos) for Kbwl   

Node accepts meld (given Kn  ⇒ Kws as Taos): 
Kn | Kbwl  says  Kn ⇒ (Kws as Taos) for Kbwl   

And from the for axiom & handoff  
Kn ⇒ (Kws as  Taos) for Kbwl  
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An Example 

 

Workstation

Operating 
system

Accounting 
application

Server

Operating 
system

NFS Server

keyboard/display 
channel

network 
channel

request
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Example: Details 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node
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AUTHENTICATING SYSTEMS: Loading 

A digest X can authenticate a program SQL: 
– KMicrosoft says “If image I has digest X then I is SQL” 

 formally X ⇒ KMicrosoft / SQL 
– This is just like KAlice ⇒ Alice@Intel  

But a program isn’t a principal: it can’t say things 
To become a principal, a program must be loaded into a 
host H 

– Booting is a special case of loading 
X ⇒ SQL makes H 

– want to run I if H likes SQL 
– willing to assert that SQL is running 
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Authenticating Systems: Roles 

A loaded program depends on the host it runs on. 
– We write H as SQL for SQL running on H 
– H as SQL says s   =   H says SQL says s 

H can’t prove that it’s running SQL 
But H can be trusted to run SQL 

– KTCS says  H as SQL ⇒ KTCS / SQL 
This lets H convince others that it’s running SQL 

– H says C ⇒ KTCS / SQL 
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Node Credentials 

Machine has some things accessible at boot time. 
A secret Kws–1    A trusted CA key Kca 

Boot code does this: 
Reads Kws–1 and then makes it unreadable. 
Reads boot image and computes digest Xtaos. 
Checks Kca  says Xtaos  ⇒ Taos. 
Generates Kn–1, the node key. 
Signs credentials Kws says Kn ⇒ Kws as Taos  
Gives image Kn–1 , Kca , credentials, but not Kws–1. 

Other systems are similar: Kws as Taos as Accounting 
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Node Credentials: Example 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node
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Example: Server’s Access Control  
Kws  says Kn  ⇒ Kws as Taos node  credentials  
Kbwl  says Kn  ⇒ 
 (Kws as Taos) for Kbwl   

login 
session  

 

Kn  says C  ⇒ Kn channel   
C says C | pr  ⇒ (Kws as Taos  as 
Accounting) for Kbwl  

process   

C | pr says “read file foo”  request 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node
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Sealed Storage: Load and Unseal 

Instead of authenticating a new key for a loaded system, 
– Kws says Kn ⇒ Kws as Taos 

Unseal an existing key 
– SK = Seal(KWSseal

-1, < ACL: Taos, Stuff: KTaosOnWS
-1>) 

– Save(ACL: Taos, Stuff: KTaosOnWS
-1>) returns SK 

– Open(SK) returns KTaosOnWS
-1if caller ⇒ Taos 
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Assurance: NGSCB (Palladium) 

A cheap, convenient, “physically” separate machine 
A high-assurance OS stack (we hope) 
A systematic notion of program identity 

– Identity = digest of (code image + parameters) 
Can abstract this: KMS says digest ⇒ KMS / SQL 

– Host certifies the running program’s identity: 
     H says  K ⇒ H as P 

– Host grants the program access to sealed data 
H seals (data, ACL) with its own secret key 
H will unseal for P if P is on the ACL  
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NGSCB Hardware 

Protected memory for separate VMs 
Unique key for hardware 
Random number generator 
Hardware attests to loaded software 
Hardware seals and unseals storage 
Secure channels to keyboard, display 
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NGSCB Issues 

Privacy: Hardware key must be certified by manufacturer 
– Use Kws to get one or more certified, anonymous 

keys from a trusted third party 
– Use zero-knowledge proof that you know a mfg-

certified key 
Upgrade: v7of SQL needs access to v6 secrets 

– v6 signs “v7 ⇒ v6” 
– or, both ⇒ SQL 

Threat model: Other software 
– Won’t withstand hardware attacks 
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NGSCB Applications 

Keep keys secure 
Network logon 
Authenticating server 
Authorizing transactions 
Digital signing 
Digital rights management 
 
Need app TCB: factor app into  

– a complicated , secure part that runs on Windows 
– a simple, secure part that runs on NGSCB 



Security in Distributed Systems B. W. Lampson  4 January 2005 111 

AUTHORIZATION in Access Control 

Guards control access to valued resources. 
Structure the system as — 

Objects entities with state. 
Principals can request operations  
 on objects. 
Operations how subjects read or change objects. 

 

Reference 
monitor Object

Do 
operation

Resource

Principal

Guard RequestSource

Audit 
log 

Authentication Authorization
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Authorization Rules 

Rules control the operations allowed 
for each principal and object. 
 

Principal may do Operation      on Object 
Taylor Read File “Raises” 
Lampson Send “Hello” Terminal 23 
Process 1274 Rewind Tape unit 7 
Schwarzkopf Fire three shots Bow gun 

Jones Pay invoice 432 Account Q34 
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Access Matrix 

 File 
Raises 

Account 
Q34 

Tape unit 
7 

Lampson read deposit  
Process 1274 read/write  r/w/rewind
Finance dept  deposit/ 

withdraw 
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Representing the Access Matrix 

 O1 O2 O3 
P1 T11 T12  
P2 T21  T23 
P3  T32   

 
 
Capability 

          ACL  
 
Prefer ACLs for long-tem authorization 

– Usually need to audit who can access a resource 
Capabilities are fine as a short-term cache 

– OS file descriptors for open files 
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Authorization with ACLs 

View a resource object O as a principal 
P on O’s ACL means P can speak for O 

– Permissions limit the set of things P can say for O 
If Spectra’s ACL says Atom can r/w, that means 

Spectra says Atom@Microsoft ⇒r/w Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   
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Access Control Lists (ACLs) 

Object O’s ACL says: principal P may access O. 
Lampson may read and write O 
(Jumbo for SRC) may append to O 

ACLs need named principals so people can read them. 
Checking access: 

Given a request Q says read O  
 an ACL P may read/write O  

Check that Q speaks for P Q ⇒ P  
 rights suffice read/write ≥ read 
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Permissions 

Principal A speaks for B about T A ⇒T B  
If A says something in set T, B does too:  
Thus, A is stronger than B, or responsible for B, about T 

– Precisely: (A says s) ∧ (s ∈ T) implies (B says s) 
Permissions represent sets of statements 

– P may read/write O     =    P ⇒r/w O 
Traditionally they appear only in ACLs, not in 
delegations, which are unrestricted 
 
T can specify some objects and some of their methods 
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Expressing sets of statements.  

SDSI / SPKI uses “tags” to define sets of statements 
A tag is a regular expression, that is, a set of strings  
The object interprets a string as a set of statements 

– Read(*.doc) = reads of files named *.doc 
– < 5000 = purchase orders less than $5000 

Also can express unions and intersections of sets  
– Read(*.doc) and < 5000 

Expressive T allows bigger objects: a single permission 
for all .doc files  
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Transitivity: Intersecting Sets 

If A ⇒T B and B ⇒U C then A ⇒T∩U C 
Why? 

A ⇒T B ≡ (A says s) ∧ (s ∈ T) implies (B says s) 
B ⇒U C ≡ (B says s) ∧ (s ∈ U) implies (C says s) 

How to implement set intersection ? 
– Might be able to simplify the expression 
– Always can test s against both T and U 
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Pragmatics 

Authorization must be  
– set up  
– later checked for correctness  
– changed as life goes on 

This works best when the authorization data is small and 
simple 
But, want to authorize the “least privilege” needed to get 
the job done 
 
Conflict. Who wins? 
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Keeping Authorization Simple 

ACLs on large sets of resources 
– Big subtrees of the file system 
– Large sets of web sites 

Usually for groups, principals that have some property, 
such as “Microsoft employee” or “type-safe” or “safe for 
scripting” 
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IMPLEMENTATION 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node
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Process Credentials 

Make a node-to-node channel C = DES(Ksr) using shared 
key encryption. 

Establishing Ksr yields C ⇒ Kn. 
The OS multiplexes this single channel among processes. 

The OS issues credentials for the subchannels C | pr. 
More multiplexing lets a process speak for several principals. 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node
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API for Authentication 

Prin represents principals, with a subtype Auth for that a 
process can speak for 
AID is an Auth identifier, a byte string  
Authenticating messages 

GetChan(dest:Address): Chan;  
GetAID(p:Auth): AID;  
Send(dest:Chan; m:Msg);  
Receive(): (Chan, Msg);  
GetPrin(c:Chan; aid:AID): Prin; 

RPC marshals an Auth parameter and unmarshals an aid 
automatically, thus hiding all these procedures  



Security in Distributed Systems B. W. Lampson  4 January 2005 125 

API for Authentication (2) 

Authorization 
Check(acl:ACL; p:Prin): BOOL 
Managing principals 
Inheritance(): ARRAY OF Auth; 
Login (name, password: TEXT): Auth;  
AdoptRole(a:Auth; role:TEXT): Auth;  
Offer (a:Auth; b:Prin): Auth;  
Claim(b:Auth; meld:Prin): Auth; 
Discard(a:Auth; all:BOOL); 
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API for Melding 

Offer (a:Auth; b:Prin): Auth;  
Claim(b:Auth; meld :Prin): Auth; 

 

    Offer 
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Implementation Internals 
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Secure Channel, Authority Managers  

The secure channel manager creates process-to-process 
secure channels.  
TYPE ChanID = { nk:KeyDigest; pr:INT; addr:Address }; 
GetChanID(ch:Chan): ChanID;  
PTagFromChan(c:ChanID): PTag; 
 
The authority manager associates Auths with processes 
and handles authentication requests.  
TYPE PrinID = { ch:ChanID; aid:AID }; 
Delegate(a:Auth; ptag:PTag);  
PurgePTag(ptag: PTag);  
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Credentials Manager  

Maintains credentials for local processes and validates 
certificates from other nodes.  
 
TYPE Cred = TEXT, CredT = ...; 
New(name, password: TEXT): CredT;  
AdoptRole(t:CredT; role: TEXT): CredT;  
Sign(t:CredT; p:PrinID): Cred;  
Validate(cr:Cred; p:PrinID): TEXT;  
Extract(cr:Cred): Cred;  
SignMeld(t:CredT; cr:Cred): Cred;  
ClaimMeld(t:CredT; cr:Cred): CredT; 
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Certification Library  

Establishes a trusted mapping between principal names 
and keys, and between groups and their members. 
 
CheckKey(name:TEXT; k:Key): BOOL;  
IsMember(name, group: TEXT): BOOL;  
CheckImage(d:Digest; prog, cert: TEXT); 
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Interfaces to Authentication 

There are two styles: 
Implicit in communication 

Authenticate at connection establishment; a client can 
find out the principal that the connection speaks for. 
Authenticate as part of a remote procedure call; the 
procedure can find the principal the caller speaks for. 

Explicit 
Pass the sending principal explicitly in every message. 

More flexible: can pass more than one principal. 
Either way abstracts authentication protocol details. 

The interface just tell you the authenticated principal. 
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Implementing Authentication: Push vs. Pull 

Two ways for receiver B to authenticate sender A: 

Push credentials: sender to receiver (Windows SIDs): 
A sends B credentials of channel C: proof that C ⇒ A.   

Pull credentials: receiver from sender (ACLs, Taos): 
A just sends to B on C.  B calls back to A to get 
credentials. B may cache them  

Variations 
A pushes part of the credentials, and B pulls the rest. 
B gets part of the credentials from A, stores part 
himself, and gets part from network services. 
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Pull Authentication: Example 

Process pr sends on C | pr; OS multiplexes C. 
Receiver’s auth agent asks for C | pr credentials. 

Read(f)

 pr ⇒ A , 
credentials  

for A 

Sender

pr

agent

OS

meaning and  
credentials of  
C|pr, please

C|pr ⇒ A, cre- 
dentials for A

Encrypt ( 
Ksr, pr says 
 Read(f))

C|pr says 
 Read(f)

Cache: 
C|pr ⇒ A

Receiver

What  
is C|pr?

C|pr ⇒ A
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Abbreviations 

Extend pull to names: 
– Sender has some long names for principals 
– Choose a short (integer, byte string) abbreviation for 

each name 
– AID is an example 

– Send the short name; if receiver doesn’t know its 
definition, it calls back to pull it over 

Short names must not be reused 
Receiver can discard its short name cache anytime 

– It will be refreshed by pull if needed 
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Example: Details 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node
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The Example Reviewed 
Kws  says Kn  ⇒ Kws as Taos node  credentials  
Kbwl  says Kn  ⇒ 
 (Kws as Taos) for Kbwl   

login 
session  

 

Kn  says C  ⇒ Kn channel   
C says C | pr  ⇒ (Kws as Taos  as 
Accounting) for Kbwl  

process   

C | pr says “read file foo”  request 

Workstation 
hardware WS

Taos node

Accounting

Server 
hardware

bsd 4.3

NFS Server

network 
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as  
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node
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Bytes vs. Secure Data  

Can choose the the flow and storage of encrypted bytes 
optimize  

– simplicity 
– performance 
– availability. 

Public key = off-line broadcast channel.  
– Write certificate on a tightly secured offline system  
–  Store it in untrusted system; anyone can verify it.  

Certificates are secure answers to pre-determined queries, 
(for example, “What is Alice’s key?”) not magic.  

– It’s the same to query an on-line secure database 
(say Kerberos KDC) over a secure channel 
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Caching Secure Data  

Caching can greatly improve performance  
It doesn’t affect security or availability  

– as long as there’s always a way to reload the cache 
if gets cleared or invalidated 
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Auditing  

Checking access: 
Given a request Q says read O  
 an ACL P may read/write O  

Check that Q speaks for P Q ⇒ P  
 rights are enough read/write ≥ read 

Auditing 
Each step is justified by  

a signed statement, or 
a rule 
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Implement: Tools and Assurance 

Services — tools for implementation 
Authentication Who said it? 
Authorization Who is trusted? 
Auditing  What happened? 

Trusted computing base  
Keep it small and simple 
Validate each component carefully 
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The “Speaks for” Relation  ⇒ 

Principal A speaks for B about T A ⇒T B  
If A says something in set T, B does too:  
Thus, A is stronger than B, or responsible for B, about T 

Precisely: (A says s) ∧ (s ∈ T) implies (B says s) 
These are the links in the chain of responsibility 
Examples 

Alice ⇒ Atom group of people 
Key #7438 ⇒ Alice key for Alice 



Security in Distributed Systems B. W. Lampson  4 January 2005 142 

Chain of responsibility 

Alice at Intel, working on Atom, connects to Spectra, 
Atom’s web page, with SSL 
Chain of responsibility:  
 KSSL ⇒ Ktemp ⇒ KAlice  
 ⇒ Alice@Intel ⇒ Atom@Microsoft  ⇒ Spectra 

 

says

 

KSSL   

says   
says

Alice’s 
smart card

Alice’s login 
system 

Spectra 
web page

Ktemp      

Alice@Intel   Atom@Microsoft   

Microsoft

Intel   

KAlice   Spectra
ACL   
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