
Security in Distributed Systems B. W. Lampson 4 January 2005 1

Security

Butler Lampson

TECS Week 2005

January 2005

Security in Distributed Systems B. W. Lampson 4 January 2005 2

Outline

Introduction: what is security?
Principals, the “speaks for” relation, and chains of
responsibility
Secure channels and encryption
Names and groups
Authenticating systems
Authorization
Implementation

Security in Distributed Systems B. W. Lampson 4 January 2005 3

REAL-WORLD SECURITY

It’s about value, locks, and punishment.
− Locks good enough that bad guys don’t break in

very often.
− Police and courts good enough that bad guys that do

break in get caught and punished often enough.
− Less interference with daily life than value of loss.

Security is expensive—buy only what you need.

− People do behave this way
− We don’t tell them this—a big mistake
− Perfect security is the worst enemy of real security

Security in Distributed Systems B. W. Lampson 4 January 2005 4

Elements of Security

Policy: Specifying security
 What is it supposed to do?
Mechanism: Implementing security
 How does it do it?
Assurance: Correctness of security
 Does it really work?

Security in Distributed Systems B. W. Lampson 4 January 2005 5

Abstract Goals for Security

Secrecy controlling who gets to read information
Integrity controlling how information changes or

resources are used
Availability providing prompt access to information

and resources
Accountability knowing who has had access to

information or resources

Security in Distributed Systems B. W. Lampson 4 January 2005 6

Dangers
Dangers
Vandalism or sabotage that

– damages information integrity
– disrupts service availability

Theft of money integrity
Theft of information secrecy
Loss of privacy secrecy

Security in Distributed Systems B. W. Lampson 4 January 2005 7

Vulnerabilities

Vulnerabilities
– Bad (buggy or hostile) programs
– Bad (careless or hostile) people

giving instructions to good programs
– Bad guys corrupting or eavesdropping on

communications
Threats

– Adversaries that can and want to exploit
vulnerabilities

Security in Distributed Systems B. W. Lampson 4 January 2005 8

Defensive strategies

Coarse: Isolate—Keep everybody out
– Disconnect

Medium: Exclude—Keep the bad guys out
– Code signing, firewalls

Fine: Restrict—Let the bad guys in, but keep them from
doing damage

– Hardest to implement
– Sandboxing, access control

Recover—Undo the damage. Helps with integrity.
– Backup systems, restore points

Punish—Catch the bad guys and prosecute them
– Auditing, police

Security in Distributed Systems B. W. Lampson 4 January 2005 9

Assurance

Trusted Computing Base (TCB)
– Everything that security depends on
– Must get it right
– Keep it small and simple

Elements of TCB
– Hardware
– Software
– Configuration

Defense in depth

Security in Distributed Systems B. W. Lampson 4 January 2005 10

Assurance: Defense in Depth

Network, with a firewall
Operating system, with sandboxing

– Basic OS (such as NT)
– Higher-level OS (such as Java)

Application that checks authorization directly

All need authentication

Security in Distributed Systems B. W. Lampson 4 January 2005 11

TCB Examples

Policy: Only outgoing Web access
TCB: firewall allowing outgoing port 80 TCP
connections, but no other traffic

Hardware, software, and configuration

Policy: Unix users can read system directories, and read
and write their home directories
TCB: hardware, Unix kernel, any program that can write
a system directory (including any that runs as superuser).

Also /etc/passwd, permissions on all directories.

Security in Distributed Systems B. W. Lampson 4 January 2005 12

TCB: Configuration

Done again for each system, unlike HW or SW
– New chance for mistakes each time

Done by amateurs, not experts
– No learning from experience
– Little training

Needs to be very simple

– At the price of flexibility, fine granularity

Security in Distributed Systems B. W. Lampson 4 January 2005 13

Making Configuration Simple

Users—keep it simple
– At most three levels: self, friends, others

Three places to put objects
– Everything else done automatically with policies

Administrators—keep it simple
– Work by defining policies. Examples:

Each user has a private home folder
Each user in one workgroup with a private folder
System folders contain vendor-approved releases
All executable programs signed by a trusted party

Today’s systems don’t support this very well

Security in Distributed Systems B. W. Lampson 4 January 2005 14

Assurance: Configuration Control

It’s 2 am. Do you know what software is running on your
machine?
Secure configuration ⇒ some apps don’t run

– Hence must be optional: “Secure my system”
– Usually used only in an emergency

Affects the entire configuration
– Software: apps, drivers, macros
– Access control: shares, authentication

Also need configuration audit

Security in Distributed Systems B. W. Lampson 4 January 2005 15

Why We Don’t Have “Real” Security

A. People don’t buy it
– Danger is small, so it’s OK to buy features instead.
– Security is expensive.

Configuring security is a lot of work.
Secure systems do less because they’re older.

– Security is a pain.
It stops you from doing things.
Users have to authenticate themselves.

B. Systems are complicated, so they have bugs.
– Especially the configuration

Security in Distributed Systems B. W. Lampson 4 January 2005 16

“Principles” for Security

Security is not formal
Security is not free
Security is fractal

Abstraction can’t keep secrets

– “Covert channels” leak them

It’s all about lattices

Security in Distributed Systems B. W. Lampson 4 January 2005 17

ELEMENTS OF SECURITY

Policy: Specifying security
 What is it supposed to do?
Mechanism: Implementing security
 How does it do it?
Assurance: Correctness of security
 Does it really work?

Security in Distributed Systems B. W. Lampson 4 January 2005 18

Specify: Policies and Models

Policy — specifies the whole system informally.
Secrecy Who can read information?
Integrity Who can change things, and how?
Availability How prompt is the service?

Model—specifies just the computer system, but does so
precisely.

Access control model guards control access
to resources.

Information flow model classify information,
prevent disclosure.

Security in Distributed Systems B. W. Lampson 4 January 2005 19

Implement: Mechanisms and Assurance

Mechanisms — tools for implementation.
Authentication Who said it?
Authorization Who is trusted?
Auditing What happened?

Trusted computing base.
Keep it small and simple.
Validate each component carefully.

Security in Distributed Systems B. W. Lampson 4 January 2005 20

 Information flow model
(Mandatory security)

A lattice of labels for data:
– unclassified < secret < top secret;
– public < personal < medical < financial

label(f (x)) = max(label(f), label(x))
Labels can keep track of data properties:

– how secret Secrecy
– how trustworthy Integrity

When you use (release or act on) the data, user needs a ≥
clearance

Security in Distributed Systems B. W. Lampson 4 January 2005 21

Access Control Model

Guards control access to valued resources.

Reference
monitor ObjectDo

operation

Resource

Principal

Guard RequestSource

Audit
log

Authentication Authorization

Security in Distributed Systems B. W. Lampson 4 January 2005 22

Access Control

Guards control access to valued resources.
Structure the system as —

Objects entities with state.
Principals can request operations
 on objects.
Operations how subjects read or change objects.

Reference
monitor Object

Do
operation

Resource

Principal

Guard RequestSource

Audit
log

Authentication Authorization

Security in Distributed Systems B. W. Lampson 4 January 2005 23

Access Control Rules

Rules control the operations allowed
for each principal and object.

Principal may do Operation on Object
Taylor Read File “Raises”
Lampson Send “Hello” Terminal 23
Process 1274 Rewind Tape unit 7
Schwarzkopf Fire three shots Bow gun

Jones Pay invoice 432 Account Q34

Security in Distributed Systems B. W. Lampson 4 January 2005 24

Mechanisms—The Gold Standard

Authenticating principals
− Mainly people, but also channels, servers, programs

(encryption makes channels, so key is a principal)
Authorizing access

− Usually for groups, principals that have some
property, such as “Microsoft employee” or “type-
safe” or “safe for scripting”

Auditing

Assurance

– Trusted computing base

Security in Distributed Systems B. W. Lampson 4 January 2005 25

Standard Operating System Security

Assume secure channel from user (without proof)
Authenticate user by local password

– Assign local user and group SIDs
Access control by ACLs: lists of SIDs and permissions

– Reference monitor is the OS, or any RPC target
Domains: same, but authenticate by RPC to controller
Web servers: same, but simplified

– Establish secure channel with SSL
– Authenticate user by local password (or certificate)
– ACL on right to enter, or on user’s private state

Security in Distributed Systems B. W. Lampson 4 January 2005 26

NT Domain Security

Just like OS except for authentication
OS does RPC to domain for authentication

– Secure channel to domain
– Just do RPC(user, password) to get user’s SIDs

Domain may do RPC to foreign domain
– Pairwise trust and pairwise secure channels
– SIDs include domain ID, so a domain can only

authenticate its own SIDs

Security in Distributed Systems B. W. Lampson 4 January 2005 27

Web Security Today

Server: Simplified from single OS
– Establish secure channel with SSL
– Authenticate user by local password (or certificate)
– ACL on right to enter, or on user’s private state

Browser (client): Basic authentication
– Of server by DNS lookup, or by SSL + certificate
– Of programs by supplier’s signature

Good programs run as user
Bad ones rejected or totally sandboxed

Security in Distributed Systems B. W. Lampson 4 January 2005 28

END-TO-END EXAMPLE

Alice is at Intel, working on Atom, a joint Intel-
Microsoft project
Alice connects to Spectra, Atom’s web page, with SSL

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice
Spectra

ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 29

Chain of responsibility

Alice at Intel, working on Atom, connects to Spectra,
Atom’s web page, with SSL
Chain of responsibility:
 KSSL ⇒ Ktemp ⇒ KAlice
 ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒ Spectra

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 30

Principals

Authentication: Who sent a message?
Authorization: Who is trusted?
Principal — abstraction of “who”:

People Lampson, Taylor
Machines VaxSN12648, Jumbo
Services SRC-NFS, X-server
Groups SRC, DEC-Employees
Roles Taylor as Manager
Joint authority Taylor and Lampson
Weakening Taylor or UntrustedProgram
Channels Key #7438

Security in Distributed Systems B. W. Lampson 4 January 2005 31

Theory of Principals

Principal says statement P says s
Lampson says “read /SRC/Lampson/foo”
SRC-CA says “Lampson’s key is #7438”
Axioms

If A says s and A says (s implies s') then A says s'
If A = B then (A says s) = (B says s)

Security in Distributed Systems B. W. Lampson 4 January 2005 32

The “Speaks for” Relation ⇒

Principal A speaks for B about T A ⇒T B
If A says something in set T, B does too:
Thus, A is stronger than B, or responsible for B, about T

Precisely: (A says s) ∧ (s ∈ T) implies (B says s)
These are the links in the chain of responsibility
Examples

Alice ⇒ Atom group of people
Key #7438 ⇒ Alice key for Alice

Security in Distributed Systems B. W. Lampson 4 January 2005 33

Delegating Authority

How do we establish a link in the chain: a fact Q ⇒ R
The “verifier” of the link must see evidence, of the form

“P says Q ⇒ R”
There are three questions about this evidence

– How do we know that P says the delegation?
– Why do we trust P for this delegation?
– Why is P willing to say it?

Security in Distributed Systems B. W. Lampson 4 January 2005 34

How Do We Know P says X?

If P is then
a key P signs X cryptographically
some other channel message X arrives on channel P
the verifier itself X is an entry in a local database
These are the only ways that the verifier can directly
know who said something: receive it on a secure channel
or store it locally
Otherwise we need C ⇒ P, where C is one of these cases

– Get this by recursion

Security in Distributed Systems B. W. Lampson 4 January 2005 35

Why Do We Trust The Delegation?

We trust A to delegate its own authority.
Delegation rule: If P says Q ⇒ R then Q ⇒ R

Reasonable if P is competent and accessible.

Security in Distributed Systems B. W. Lampson 4 January 2005 36

Why Is P Willing To Delegate To Q?

Some facts are installed manually
– KIntel ⇒ Intel, when Intel and Microsoft establish a

direct relationship
– The ACL entry Lampson ⇒ usr/Lampson

Others follow from the properties of some algorithm
– If Diffie-Hellman yields KDH, then I can say

“KDH ⇒ me, provided
You are the other end of the KDH run
You don’t disclose KDH to anyone else
You don’t use KDH to send anything yourself.”

In practice I simply sign KDH ⇒ Kme

Security in Distributed Systems B. W. Lampson 4 January 2005 37

Why Is P Willing To Delegate To Q?

Others follow from the properties of some algorithm
– If server S starts process P from and sets up a

channel C from P, it can say C ⇒ SQLv71

Of course, only someone who believes S ⇒ SQLv71
will believe this
To be conservative, S might compute a strong hash
HSQLv71 of SQLv71.exe and require

Microsoft says “HSQLv71 ⇒ SQLv71”
before authenticating C

Security in Distributed Systems B. W. Lampson 4 January 2005 38

Chain of responsibility

Alice at Intel, working on Atom, connects to Spectra,
Atom’s web page, with SSL
Chain of responsibility:
 KSSL ⇒ Ktemp ⇒ KAlice
 ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒ Spectra

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 39

Authenticating Channels

Chain of responsibility:
KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒ ...

Ktemp says KAlice says
(SSL setup) (via smart card)

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice
Spectra

ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 40

Authenticating Names: SDSI

A name is in a name space, defined by a principal P
– P is like a directory. The root principals are keys.

Rule: P speaks for any name in its name space
KIntel ⇒ Intel ⇒ Intel/Alice (= Alice@Intel)

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 41

Authenticating Names

KIntel ⇒ Intel ⇒ Intel/Alice (= Alice@Intel)
Ktemp ⇒ KAlice ⇒ Alice@Intel⇒ ...

 KIntel says

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice
Spectra

ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 42

Authenticating Groups

A group is a principal; its members speak for it
– Alice@Intel ⇒ Atom@Microsoft
– Bob@Microsoft ⇒ Atom@Microsoft
– …

Evidence for groups: Just like names and keys.
KMicrosoft ⇒ Microsoft ⇒ Microsoft/Atom
 (= Atom@Microsoft)

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 43

Authenticating Groups

KMicrosoft ⇒ Microsoft ⇒ Atom@Microsoft

... ⇒ KAlice ⇒Alice@Intel ⇒ Atom@Microsoft⇒ ...

 KMicrosoft says

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 44

Authorization with ACLs

View a resource object O as a principal
P on O’s ACL means P can speak for O

– Permissions limit the set of things P can say for O
If Spectra’s ACL says Atom can r/w, that means

Spectra says Atom@Microsoft ⇒r/w Spectra

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 45

Authorization with ACLs

Spectra’s ACL says Atom can r/w

...⇒ Alice@Intel ⇒ Atom@Microsoft⇒r/w Spectra

 Spectra says

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 46

End-to-End Example: Summary

Request on SSL channel: KSSL says “read Spectra”
Chain of responsibility:
 KSSL ⇒ Ktemp ⇒ KAlice
 ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒ Spectra

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 47

Compatibility with Local OS?

(1) Put network principals on OS ACLs
(2) Let network principal speak for local one

– Alice@Intel ⇒ Alice@microsoft
– Use network authentication

replacing local or domain authentication
– Users and ACLs stay the same

(3) Assign SIDs to network principals
– Do this automatically
– Use network authentication as before

Security in Distributed Systems B. W. Lampson 4 January 2005 48

Summaries

The chain of responsibility can be long
Ktemp says KSSL ⇒ Ktemp
KAlice says Ktemp ⇒ KAlice
KIntel says KAlice ⇒ Alice@Intel
KMicrosoft says Alice@Intel ⇒ Atom@Microsoft
Spectra says Atom@Microsoft ⇒r/w Spectra

Can replace a long chain with one summary certificate
Spectra says KSSL ⇒r/w Spectra

Need a principal who speaks for the end of the chain
This is often called a capability

Security in Distributed Systems B. W. Lampson 4 January 2005 49

Lattice of Principals

A and B max, least upper bound
(A and B) says s ≡ (A says s) and (B says s)

A or B min, greatest lower bound
(A or B) says s ≡ (A says s) or (B says s)

Now A ⇒ B ≡ (A = A and B) ≡ (B = A or B)
Thus ⇒ is the lattice’s partial order

Could we interpret this as sets? Not easily: and is not
intersection

Security in Distributed Systems B. W. Lampson 4 January 2005 50

Facts about Principals

A = B is equivalent to (A ⇒ B) and (B ⇒ A)
⇒ is transitive
and, or are associative, commutative, and idempotent
and, or are monotonic:

If A' ⇒ A then (A' and B) ⇒ (A and B)
 (A' or B) ⇒ (A or B)
Important because a principal may be stronger than
needed

Security in Distributed Systems B. W. Lampson 4 January 2005 51

Lattices: Information Flow to Principals

A lattice of labels:
– unclassified < secret < top secret;
– public < personal < medical < financial

Use the same labels as principals, and let ⇒ represent
clearance

– lampson ⇒ secret
Or, use names rooted in principals as labels

– lampson/personal, lampson/medical
Then the principal can declassify

Security in Distributed Systems B. W. Lampson 4 January 2005 52

SECURE CHANNELS

A secure channel:
• says things directly C says s
• has known possible receivers secrecy
 possible senders integrity
• if P is the only possible sender, then C ⇒ P

Examples
Within a node: operating system (pipes, etc.)
Between nodes:

Secure wire difficult to implement
Network fantasy for most networks
Encryption practical

Security in Distributed Systems B. W. Lampson 4 January 2005 53

Names for Channels

A channel needs a name to be authenticated properly
– KAlice says Ktemp ⇒ KAlice

It’s not OK to have
– KAlice says “this channel ⇒ KAlice”

unless you trust the receiver not to send this on another
channel!

– Thus it is OK to authenticate yourself by sending a
password to amazon.com on an SSL channel already
authenticated (by a Verisign certificate) as going to
Amazon.

Security in Distributed Systems B. W. Lampson 4 January 2005 54

Multiplexing a Channel

Connect n channels A, B, ... to one channel X to make n
new sub-channels X|A, X|B, ... Each subchannel has its
own address on X
The multiplexer must be trusted

A

B

C

MA

MB

MC

B, MB

A, MA

X

Security in Distributed Systems B. W. Lampson 4 January 2005 55

Quoting

 A | B A quoting B
A | B says s ≡ A says (B says s)

Axioms
| is associative
| distributes over and, or
A ⇒*⇒A|B A | B

Security in Distributed Systems B. W. Lampson 4 January 2005 56

Multiplexing a Channel: Examples

Multiplexer Main
channel

Subchannels Address

OS node–node process–
process

port or
process ID

Network
routing

node–
network

node–node node address

Security in Distributed Systems B. W. Lampson 4 January 2005 57

Signed Secure Channels

The channel is defined by the key: If only A knows K–1,
then K ⇒ A (Actually, if only A uses K–1, then K ⇒ A)
K says s is a message which K can verify

The bits of “K says s” can travel on any path

s
Sign(K-1, s) }K says s

K says s{ Verify(K, s)
s

OK?

Security in Distributed Systems B. W. Lampson 4 January 2005 58

Abstract Cryptography: Sign/Verify

Verify(K, M, sig) = true iff sig = Sign(K', M) and K' = K-1
– Is sig K’s signature on M?

Concretely, with RSA public key:
– Sign(K-1, M) = RSAencrypt(K-1, SHA1(M))
– Verify(K, M, sig) = (SHA1(M) = RSAdecrypt(K, sig))

Concretely, with AES shared key:
– Sign(K, M) = SHA1(K, SHA1(K || M))
– Verify(K, M, sig) = (SHA1(K, SHA1(K || M)) = sig)

Concrete crypto is for experts only!

Security in Distributed Systems B. W. Lampson 4 January 2005 59

Abstract Cryptography: Seal/Unseal

Unseal(K-1, Seal(K, M)) = M, and without K-1 you can’t
learn anything about M from Seal(K, M)

Concretely, with RSA public key:
– Seal(K, M) = RSAencrypt(K-1, IV || M)
– Unseal(K, Msealed) = RSAdecrypt(K, M sealed).M

Concretely, with AES shared key:
– Seal(K, M) = AESencrypt(K, IV || M)
– Unseal(K, M sealed) = AESdecrypt(K, M sealed).M

Concrete crypto is for experts only!

Security in Distributed Systems B. W. Lampson 4 January 2005 60

Sign and Seal

Normally when sealing must sign as well!
– Seal(Kseal

-1, M || Sign(K sign
-1, M))

Often Sign is replaced with a checksum ???
Concrete crypto is for experts only!

Encrypt
with K

Decrypt
with K

s

Checksum

K says s

OK

Checksum

K says s

–1

s

=

Security in Distributed Systems B. W. Lampson 4 January 2005 61

Public Key vs. Shared Key
Public key: K ≠ K-1

– Broadcast
– Slow
– Non-repudiable (only one possible sender)
– Used for certificates

Key ⇒ name: KIntel says KAlice ⇒ Alice@Intel
Temp key ⇒ key: Ktemp says KSSL ⇒ Ktemp
 KAlice says Ktemp ⇒ KAlice

Shared key: K = K-1
– Point to point
– Fast

Can simulate public key with trusted on-line server

Security in Distributed Systems B. W. Lampson 4 January 2005 62

How Fast is Encryption?

 Use Notes
RSA encrypt 5 ms (25 KB/s) sign 1000 bit modulus
RSA decrypt 0.2 ms (625 KB/s) verify Exponent=17
SHA-1 70 MBytes/s sign HMAC
AES 50 MBytes/s seal 256 bit key

On 2 GHz Pentium, Microsoft Visual C++. Data from
Wei Dai at www.cryptopp.com
Might be 2x faster with careful optimization

Security in Distributed Systems B. W. Lampson 4 January 2005 63

Fast Encryption in Practice

Want to run at network speed.
How? Put encryption into the data path.

Network interface parses the packet to find a
key identifier and maps it to a key for decryption
Parsing depends on network protocol (e.g., TCP/IP)

header

key id K

Encrypt(K, body)

parse
net-
work host

header

K

body

Encrypted
packet

Network
interface

Decrypted
packet

key id→ key

Decrypt(,)

r r

Security in Distributed Systems B. W. Lampson 4 January 2005 64

Messages on Encrypted Channels

If K says s, we say that s is signed by K
Sometimes we call “K says s” a certificate

The channel isn’t real-time: K says s is just bits
K says s can be viewed as

• An event: s transmitted on channel K
• A pile of bits which makes sense if you know the

decryption key
• A logical formula

Security in Distributed Systems B. W. Lampson 4 January 2005 65

Messages vs. Meaning

Standard notation for Seal(Kseal
-1, M || Sign(K sign

-1, M)) is
{M}K. This does not give the meaning
Must parse message bits to get the meaning

– Need unambiguous language for all K’s messages
– In practice, this implies version numbers

Meaning could be a logical formula, or English
– A, B, {K}KCA means C says (to A) “K is a key”. C

says nothing about A and B. This is useless
– {A, B, K}KCA means C says “K is a key for A to talk

to B”. C says nothing about when K is valid
– {A, B, K, T}KCA means C says “K is a key for A to

talk to B first issued at time T”

Security in Distributed Systems B. W. Lampson 4 January 2005 66

Replay

Encryption doesn’t stop replay of messages.
Receiver must discard duplicates.
This means each message must be unique.
 Usually done with sequence numbers.
Receiver must remember last sequence number while
the key is valid.

Transport protocols solve the same problem.

Security in Distributed Systems B. W. Lampson 4 January 2005 67

Timeliness

Must especially protect authentication against replay
If C says KA ⇒ A to B and Eve records this, she can get
B to believe in KA just by replaying C’s message.

Now she can replay A’s commands to B.
If she ever learns KA, even much later, she can
also impersonate A.

To avoid this, B needs a way to know that C’s message
is not old.

Sequence numbers impractical—too much long-
term state.

Security in Distributed Systems B. W. Lampson 4 January 2005 68

Timestamps and Nonces

Timestamps
With synchronized clocks, C just adds the time T,
saying to B

KC says KA ⇒ A at T
Nonces

Otherwise, B tells C a nonce NB which is new, and C
sends to B

KC says KA ⇒ A after NB

Security in Distributed Systems B. W. Lampson 4 January 2005 69

NAMES FOR PRINCIPALS

Authorization is to named principals. Users have to read
these to check them.
Lampson may read file report

Root names must be defined locally
 KIntel ⇒ Intel

From a root you can build a path name
Intel/Alice (= Alice@Intel)

With a suitable root principals can have global names.
/DEC/SRC/Lampson may read file
/DEC/SRC/udir/Lampson/report

Security in Distributed Systems B. W. Lampson 4 January 2005 70

Authenticating Names

KIntel ⇒ Intel ⇒ Intel/Alice (= Alice@Intel)
Ktemp ⇒ KAlice ⇒ Alice@Intel⇒ ...

 KIntel says

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice
Spectra

ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 71

Authenticating a Channel

Authentication — who can send on a channel.
C ⇒ P; C is the channel, P the sender.

Initialization — some such facts are built in: Kca ⇒ CA.
To get new ones, must trust some principal, a
certification authority.

Simplest: trust CA to authenticate any name:
 CA ⇒ Anybody

Then CA can authenticate channels:
Kca says Kws ⇒ WS
Kca says Kbwl ⇒ bwl

Security in Distributed Systems B. W. Lampson 4 January 2005 72

One-Way Authentication

CA

A

, Kb⇒B

, Kca ⇒ CA
CA ⇒ Anybody

CA says Kb⇒B
Kb ⇒ B

CA knows

A learns

A knows

Kca says Kb ⇒ B

Kca
-1

Ka
-1

Certificates

Security in Distributed Systems B. W. Lampson 4 January 2005 73

Mutual Authentication

CA

A B

, Ka⇒A, Kb⇒B

, Kca ⇒ CA
CA ⇒ Anybody

CA says Kb⇒B
Kb ⇒ B

CA knows

A learns

A knows

Kca says Kb ⇒ B Kca says Ka ⇒ A

Kca
-1

Kb
-1

Ka
-1 , Kca ⇒ CA

CA ⇒ Anybody

CA says Ka⇒A
Ka ⇒ A

B learns

B knows

Certificates

This also works with shared keys, as in Kerberos.

Security in Distributed Systems B. W. Lampson 4 January 2005 74

Who Is The CA

“Built In”
CA’s in browsers

– There are lots
– Because of politics
– Look at Tools / Internet options /
Content / Publishers /
Trusted root certification authorities

This is a configuration problem

Security in Distributed Systems B. W. Lampson 4 January 2005 75

Revocation

Revoke a certificate by making the receiver think it’s
invalid.
To do this fast, the source of certificates must be online.

This loses a major advantage of public keys, and
reduces security.

Solution: countersigning —
An offline CAassert, highly secure.
An online CArevoke, highly timely.
Both must sign for the certificate to be believed, i.e.,

CAassert and CArevoke ⇒ Anybody

Security in Distributed Systems B. W. Lampson 4 January 2005 76

Large-Scale Authentication

A large system can’t have CA ⇒ Anybody.
Instead, must have many CA's, one for each part.

One natural way is based on a naming hierarchy:
A tree of directories with principals as the leaves

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

Security in Distributed Systems B. W. Lampson 4 January 2005 77

Large-Scale Authentication: Example
Keep trust as local as possible:
Authenticating A to B needs trust only up to
least common ancestor

dec for /dec/lampson → /dec/abadi
root for /dec/lampson → /mit/clark

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

Security in Distributed Systems B. W. Lampson 4 January 2005 78

Rules for Path Names

New operator except:
Informally, P except M can speak for P / N as long as
N ≠ M

Axioms
P except M ⇒ P
(P except M) | N ⇒ P / N except ‘..’ if N ≠ M child
(P / N except M) | ‘..’⇒ P except N if N ≠ ‘..’ parent

Effect: Authentication can traverse the tree outward from
the starting point, but can never retrace its steps

Security in Distributed Systems B. W. Lampson 4 January 2005 79

Rules for Path Names: Example
Start with Clampson ⇒ /dec/lampson except nil known

Clampson says Cdec ⇒ /dec except lampson parent
Cdec says Croot ⇒ / except dec parent
Croot says Cmit ⇒ /mit except “..” child
Cmit says Cclark ⇒ /mit/clark except “..” child

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

Security in Distributed Systems B. W. Lampson 4 January 2005 80

Trusting Fewer Authorities: Cross-Links

For less trust, add links to the tree
Now lampson trusts only dec for
 /dec/lampson → /dec/mit/clark

root

dec

3756

mit

lampson

15

abadi

48 24

clark

21

mit

Security in Distributed Systems B. W. Lampson 4 January 2005 81

Login

Chain of responsibility:
KSSL ⇒ Ktemp ⇒ KAlice ⇒ Alice@Intel ⇒ ...

Ktemp says KAlice says
(SSL setup) (via smart card)

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice
Spectra

ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 82

Authenticating Users

Goals
Hide the secret that authenticates the user
Authenticate without disclosing it
Let a node N speak for the user: N ⇒ Alice

Method
KAlice ⇒ Alice
KAlice says N ⇒ Alice
KAlice–1 is the user’s secret

It can be stored encrypted by her password,
or better, held inside a smart card.

Security in Distributed Systems B. W. Lampson 4 January 2005 83

Identifying Nodes for Login Delegation

Usually a workstation has no permanent identity
– Not true for servers
– Workstation might have a “meets ITG policy”

identity
Need a temporary principal for Alice to delegate to at
login
Generate login session key Ktemp

Security in Distributed Systems B. W. Lampson 4 January 2005 84

User Credentials

CA generates:
– user key: KAlice–1
– child certificate: KCA says KAlice ⇒ Alice

Certificate is public
Where to keep KAlice–1?

– Smart card
– Encrypted by password
– On a server

Security in Distributed Systems B. W. Lampson 4 January 2005 85

Server-mediated Login

Workstation talks to login server
Server confining user’s presence

– Password
– One-time password
– Time-varying password
– Smart card
– Biometrics

Security in Distributed Systems B. W. Lampson 4 January 2005 86

Two-factor Authentication

Problems with passwords
Advantages of physical “tokens”
What if token is stolen?
Combine token and something tied to user

– Password / PIN
– Biometrics

Problem with passwords: exhaustive search
Problems with biometrics: not secret, can’t change

Security in Distributed Systems B. W. Lampson 4 January 2005 87

Login with Node Identity

Check Kca says KAlice ⇒ Alice
Generate Ktemp –1, a login session key.
Delegate to session key K temp and node key Kn

KAlice says (Ktemp and Kn) ⇒ KAlice
Then the session key countersigns with a short timeout,
say 30 minutes:
 Ktemp says Kn ⇒ Ktemp
OS discards Ktemp –1 at logout, and the delegation expires
within 30 minutes.

Security in Distributed Systems B. W. Lampson 4 January 2005 88

GROUPS and Group Credentials

Defining groups: A group is a principal; its members
speak for it

Alice@Intel ⇒ Atom@Microsoft
Bob@Microsoft ⇒ Atom@Microsoft
. . .

Proving group membership: Use certificates
K Microsoft says Alice@Intel ⇒ Atom@Microsoft

Security in Distributed Systems B. W. Lampson 4 January 2005 89

Authenticating Groups

KMicrosoft ⇒ Microsoft ⇒ Atom@Microsoft

... ⇒ KAlice ⇒Alice@Intel ⇒ Atom@Microsoft⇒ ...

 KMicrosoft says

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 90

What Is A Group

Set of principals
– Alice@Intel ⇒ Atom@Microsoft

Principals with some property
– Resident over 21 years old
– Type-checked program

Can think of the group (or property) as an attribute of
each principal that is a member

Security in Distributed Systems B. W. Lampson 4 January 2005 91

Certifying Properties

Need a trusted authority: CA ⇒ typesafe

– Actually KMS says CA ⇒ KMS / typesafe
Usually done manually
Can also be done by a program P

– A compiler
– A class loader
– A more general proof checker

Logic is the same: P ⇒ typesafe
– Someone must authorize the program:
– KMS says P ⇒ KMS / typesafe

Security in Distributed Systems B. W. Lampson 4 January 2005 92

Groups As Parameters

An application may have some “built-in” groups
Example: In an enterprise app, each division has

– groups: manager, employees, finance, marketing
– folders: budget, advertising plans, ...

Thus, the steel division is an instance of this, with
– steelMgr, steelEmps, steelFinance, steelMarketing
– folders: steelBudget, steelAdplans, ...

Security in Distributed Systems B. W. Lampson 4 January 2005 93

P and Q: Separation of Duty

Often we want two authorities for something.
A and B says s = (A says s) ∧ (B says s)
We use a compound principal with and to express this:

Lampson and Taylor two users
Lampson and Ingres user running an application
CAassert and CArevoke online and offline CAs

Security in Distributed Systems B. W. Lampson 4 January 2005 94

P or Q: Weakening

Sometimes want to weaken a principal
A or B says s = (A says s) ∨ (B says s)

– A ∨ B says “read f ” needs both A⇒R f and B⇒R f

– Example: Java rule—callee ⇒ caller ∨ callee-code
– Example: NT restricted tokens—if process P is

running untrusted-code for blampson then
P ⇒ blampson ∨ untrusted-code

Security in Distributed Systems B. W. Lampson 4 January 2005 95

P as R: Roles

To limit its authority, a principal can assume a role.
People assume roles: Lampson as Professor
Machines assume roles as nodes by running OS
programs: Vax#1724 as BSD4.3a4 = Jumbo
Nodes assume roles as servers by running services:

Jumbo as SRC-NFS

Metaphor: a role is a program
Encoding: A as R ≡ A | R if R is a role
Axioms: A ⇒*⇒A|R A as R if R is a role

Security in Distributed Systems B. W. Lampson 4 January 2005 96

B for A: Melding

B for A: B acting on behalf of A
Workstation22 for Lampson
Ingres for Lampson

Axiom: (A | B) and (B | A) ⇒ B for A
To delegate —

A offers: A | B says B | A ⇒ B for A
B accepts: B | A says B | A ⇒ B for A
Together: (A | B and B | A) says B | A ⇒ B for A
Final delegation: B | A ⇒ B for A

Security in Distributed Systems B. W. Lampson 4 January 2005 97

Using a Meld

Suppose the ACL for file foo says
SRC-WS for Lampson may read “foo”

If we know WS22 ⇒ SRC-WS
then WS22 for Lampson may read “foo”

Security in Distributed Systems B. W. Lampson 4 January 2005 98

Meld Example: Login Credentials
Get Kbwl–1 from Encrypt(PW, Kbwl–1) with user’s password
Check Kca says Kbwl ⇒ bwl
Offer meld to node key Kn:

Kbwl | Kn says Kn ⇒ (Kws as Taos) for Kbwl

Node accepts meld (given Kn ⇒ Kws as Taos):
Kn | Kbwl says Kn ⇒ (Kws as Taos) for Kbwl

And from the for axiom & handoff
Kn ⇒ (Kws as Taos) for Kbwl

Security in Distributed Systems B. W. Lampson 4 January 2005 99

An Example

Workstation

Operating
system

Accounting
application

Server

Operating
system

NFS Server

keyboard/display
channel

network
channel

request

Security in Distributed Systems B. W. Lampson 4 January 2005 100

Example: Details

Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

Security in Distributed Systems B. W. Lampson 4 January 2005 101

AUTHENTICATING SYSTEMS: Loading

A digest X can authenticate a program SQL:
– KMicrosoft says “If image I has digest X then I is SQL”

 formally X ⇒ KMicrosoft / SQL
– This is just like KAlice ⇒ Alice@Intel

But a program isn’t a principal: it can’t say things
To become a principal, a program must be loaded into a
host H

– Booting is a special case of loading
X ⇒ SQL makes H

– want to run I if H likes SQL
– willing to assert that SQL is running

Security in Distributed Systems B. W. Lampson 4 January 2005 102

Authenticating Systems: Roles

A loaded program depends on the host it runs on.
– We write H as SQL for SQL running on H
– H as SQL says s = H says SQL says s

H can’t prove that it’s running SQL
But H can be trusted to run SQL

– KTCS says H as SQL ⇒ KTCS / SQL
This lets H convince others that it’s running SQL

– H says C ⇒ KTCS / SQL

Security in Distributed Systems B. W. Lampson 4 January 2005 103

Node Credentials

Machine has some things accessible at boot time.
A secret Kws–1 A trusted CA key Kca

Boot code does this:
Reads Kws–1 and then makes it unreadable.
Reads boot image and computes digest Xtaos.
Checks Kca says Xtaos ⇒ Taos.
Generates Kn–1, the node key.
Signs credentials Kws says Kn ⇒ Kws as Taos
Gives image Kn–1 , Kca , credentials, but not Kws–1.

Other systems are similar: Kws as Taos as Accounting

Security in Distributed Systems B. W. Lampson 4 January 2005 104

Node Credentials: Example

Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

Security in Distributed Systems B. W. Lampson 4 January 2005 105

Example: Server’s Access Control
Kws says Kn ⇒ Kws as Taos node credentials
Kbwl says Kn ⇒
 (Kws as Taos) for Kbwl

login
session

Kn says C ⇒ Kn channel
C says C | pr ⇒ (Kws as Taos as
Accounting) for Kbwl

process

C | pr says “read file foo” request

Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

Security in Distributed Systems B. W. Lampson 4 January 2005 106

Sealed Storage: Load and Unseal

Instead of authenticating a new key for a loaded system,
– Kws says Kn ⇒ Kws as Taos

Unseal an existing key
– SK = Seal(KWSseal

-1, < ACL: Taos, Stuff: KTaosOnWS
-1>)

– Save(ACL: Taos, Stuff: KTaosOnWS
-1>) returns SK

– Open(SK) returns KTaosOnWS
-1if caller ⇒ Taos

Security in Distributed Systems B. W. Lampson 4 January 2005 107

Assurance: NGSCB (Palladium)

A cheap, convenient, “physically” separate machine
A high-assurance OS stack (we hope)
A systematic notion of program identity

– Identity = digest of (code image + parameters)
Can abstract this: KMS says digest ⇒ KMS / SQL

– Host certifies the running program’s identity:
 H says K ⇒ H as P

– Host grants the program access to sealed data
H seals (data, ACL) with its own secret key
H will unseal for P if P is on the ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 108

NGSCB Hardware

Protected memory for separate VMs
Unique key for hardware
Random number generator
Hardware attests to loaded software
Hardware seals and unseals storage
Secure channels to keyboard, display

Security in Distributed Systems B. W. Lampson 4 January 2005 109

NGSCB Issues

Privacy: Hardware key must be certified by manufacturer
– Use Kws to get one or more certified, anonymous

keys from a trusted third party
– Use zero-knowledge proof that you know a mfg-

certified key
Upgrade: v7of SQL needs access to v6 secrets

– v6 signs “v7 ⇒ v6”
– or, both ⇒ SQL

Threat model: Other software
– Won’t withstand hardware attacks

Security in Distributed Systems B. W. Lampson 4 January 2005 110

NGSCB Applications

Keep keys secure
Network logon
Authenticating server
Authorizing transactions
Digital signing
Digital rights management

Need app TCB: factor app into

– a complicated , secure part that runs on Windows
– a simple, secure part that runs on NGSCB

Security in Distributed Systems B. W. Lampson 4 January 2005 111

AUTHORIZATION in Access Control

Guards control access to valued resources.
Structure the system as —

Objects entities with state.
Principals can request operations
 on objects.
Operations how subjects read or change objects.

Reference
monitor Object

Do
operation

Resource

Principal

Guard RequestSource

Audit
log

Authentication Authorization

Security in Distributed Systems B. W. Lampson 4 January 2005 112

Authorization Rules

Rules control the operations allowed
for each principal and object.

Principal may do Operation on Object
Taylor Read File “Raises”
Lampson Send “Hello” Terminal 23
Process 1274 Rewind Tape unit 7
Schwarzkopf Fire three shots Bow gun

Jones Pay invoice 432 Account Q34

Security in Distributed Systems B. W. Lampson 4 January 2005 113

Access Matrix

 File
Raises

Account
Q34

Tape unit
7

Lampson read deposit
Process 1274 read/write r/w/rewind
Finance dept deposit/

withdraw

Security in Distributed Systems B. W. Lampson 4 January 2005 114

Representing the Access Matrix

 O1 O2 O3
P1 T11 T12
P2 T21 T23
P3 T32

Capability

 ACL

Prefer ACLs for long-tem authorization

– Usually need to audit who can access a resource
Capabilities are fine as a short-term cache

– OS file descriptors for open files

Security in Distributed Systems B. W. Lampson 4 January 2005 115

Authorization with ACLs

View a resource object O as a principal
P on O’s ACL means P can speak for O

– Permissions limit the set of things P can say for O
If Spectra’s ACL says Atom can r/w, that means

Spectra says Atom@Microsoft ⇒r/w Spectra

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 116

Access Control Lists (ACLs)

Object O’s ACL says: principal P may access O.
Lampson may read and write O
(Jumbo for SRC) may append to O

ACLs need named principals so people can read them.
Checking access:

Given a request Q says read O
 an ACL P may read/write O

Check that Q speaks for P Q ⇒ P
 rights suffice read/write ≥ read

Security in Distributed Systems B. W. Lampson 4 January 2005 117

Permissions

Principal A speaks for B about T A ⇒T B
If A says something in set T, B does too:
Thus, A is stronger than B, or responsible for B, about T

– Precisely: (A says s) ∧ (s ∈ T) implies (B says s)
Permissions represent sets of statements

– P may read/write O = P ⇒r/w O
Traditionally they appear only in ACLs, not in
delegations, which are unrestricted

T can specify some objects and some of their methods

Security in Distributed Systems B. W. Lampson 4 January 2005 118

Expressing sets of statements.

SDSI / SPKI uses “tags” to define sets of statements
A tag is a regular expression, that is, a set of strings
The object interprets a string as a set of statements

– Read(*.doc) = reads of files named *.doc
– < 5000 = purchase orders less than $5000

Also can express unions and intersections of sets
– Read(*.doc) and < 5000

Expressive T allows bigger objects: a single permission
for all .doc files

Security in Distributed Systems B. W. Lampson 4 January 2005 119

Transitivity: Intersecting Sets

If A ⇒T B and B ⇒U C then A ⇒T∩U C
Why?

A ⇒T B ≡ (A says s) ∧ (s ∈ T) implies (B says s)
B ⇒U C ≡ (B says s) ∧ (s ∈ U) implies (C says s)

How to implement set intersection ?
– Might be able to simplify the expression
– Always can test s against both T and U

Security in Distributed Systems B. W. Lampson 4 January 2005 120

Pragmatics

Authorization must be
– set up
– later checked for correctness
– changed as life goes on

This works best when the authorization data is small and
simple
But, want to authorize the “least privilege” needed to get
the job done

Conflict. Who wins?

Security in Distributed Systems B. W. Lampson 4 January 2005 121

Keeping Authorization Simple

ACLs on large sets of resources
– Big subtrees of the file system
– Large sets of web sites

Usually for groups, principals that have some property,
such as “Microsoft employee” or “type-safe” or “safe for
scripting”

Security in Distributed Systems B. W. Lampson 4 January 2005 122

IMPLEMENTATION

Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

Security in Distributed Systems B. W. Lampson 4 January 2005 123

Process Credentials

Make a node-to-node channel C = DES(Ksr) using shared
key encryption.

Establishing Ksr yields C ⇒ Kn.
The OS multiplexes this single channel among processes.

The OS issues credentials for the subchannels C | pr.
More multiplexing lets a process speak for several principals.

Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

Security in Distributed Systems B. W. Lampson 4 January 2005 124

API for Authentication

Prin represents principals, with a subtype Auth for that a
process can speak for
AID is an Auth identifier, a byte string
Authenticating messages

GetChan(dest:Address): Chan;
GetAID(p:Auth): AID;
Send(dest:Chan; m:Msg);
Receive(): (Chan, Msg);
GetPrin(c:Chan; aid:AID): Prin;

RPC marshals an Auth parameter and unmarshals an aid
automatically, thus hiding all these procedures

Security in Distributed Systems B. W. Lampson 4 January 2005 125

API for Authentication (2)

Authorization
Check(acl:ACL; p:Prin): BOOL
Managing principals
Inheritance(): ARRAY OF Auth;
Login (name, password: TEXT): Auth;
AdoptRole(a:Auth; role:TEXT): Auth;
Offer (a:Auth; b:Prin): Auth;
Claim(b:Auth; meld:Prin): Auth;
Discard(a:Auth; all:BOOL);

Security in Distributed Systems B. W. Lampson 4 January 2005 126

API for Melding

Offer (a:Auth; b:Prin): Auth;
Claim(b:Auth; meld :Prin): Auth;

 Offer

Security in Distributed Systems B. W. Lampson 4 January 2005 127

Implementation Internals

Security in Distributed Systems B. W. Lampson 4 January 2005 128

Secure Channel, Authority Managers

The secure channel manager creates process-to-process
secure channels.
TYPE ChanID = { nk:KeyDigest; pr:INT; addr:Address };
GetChanID(ch:Chan): ChanID;
PTagFromChan(c:ChanID): PTag;

The authority manager associates Auths with processes
and handles authentication requests.
TYPE PrinID = { ch:ChanID; aid:AID };
Delegate(a:Auth; ptag:PTag);
PurgePTag(ptag: PTag);

Security in Distributed Systems B. W. Lampson 4 January 2005 129

Credentials Manager

Maintains credentials for local processes and validates
certificates from other nodes.

TYPE Cred = TEXT, CredT = ...;
New(name, password: TEXT): CredT;
AdoptRole(t:CredT; role: TEXT): CredT;
Sign(t:CredT; p:PrinID): Cred;
Validate(cr:Cred; p:PrinID): TEXT;
Extract(cr:Cred): Cred;
SignMeld(t:CredT; cr:Cred): Cred;
ClaimMeld(t:CredT; cr:Cred): CredT;

Security in Distributed Systems B. W. Lampson 4 January 2005 130

Certification Library

Establishes a trusted mapping between principal names
and keys, and between groups and their members.

CheckKey(name:TEXT; k:Key): BOOL;
IsMember(name, group: TEXT): BOOL;
CheckImage(d:Digest; prog, cert: TEXT);

Security in Distributed Systems B. W. Lampson 4 January 2005 131

Interfaces to Authentication

There are two styles:
Implicit in communication

Authenticate at connection establishment; a client can
find out the principal that the connection speaks for.
Authenticate as part of a remote procedure call; the
procedure can find the principal the caller speaks for.

Explicit
Pass the sending principal explicitly in every message.

More flexible: can pass more than one principal.
Either way abstracts authentication protocol details.

The interface just tell you the authenticated principal.

Security in Distributed Systems B. W. Lampson 4 January 2005 132

Implementing Authentication: Push vs. Pull

Two ways for receiver B to authenticate sender A:

Push credentials: sender to receiver (Windows SIDs):
A sends B credentials of channel C: proof that C ⇒ A.

Pull credentials: receiver from sender (ACLs, Taos):
A just sends to B on C. B calls back to A to get
credentials. B may cache them

Variations
A pushes part of the credentials, and B pulls the rest.
B gets part of the credentials from A, stores part
himself, and gets part from network services.

Security in Distributed Systems B. W. Lampson 4 January 2005 133

Pull Authentication: Example

Process pr sends on C | pr; OS multiplexes C.
Receiver’s auth agent asks for C | pr credentials.

Read(f)

 pr ⇒ A ,
credentials

for A

Sender

pr

agent

OS

meaning and
credentials of
C|pr, please

C|pr ⇒ A, cre-
dentials for A

Encrypt (
Ksr, pr says
 Read(f))

C|pr says
 Read(f)

Cache:
C|pr ⇒ A

Receiver

What
is C|pr?

C|pr ⇒ A

Security in Distributed Systems B. W. Lampson 4 January 2005 134

Abbreviations

Extend pull to names:
– Sender has some long names for principals
– Choose a short (integer, byte string) abbreviation for

each name
– AID is an example

– Send the short name; if receiver doesn’t know its
definition, it calls back to pull it over

Short names must not be reused
Receiver can discard its short name cache anytime

– It will be refreshed by pull if needed

Security in Distributed Systems B. W. Lampson 4 January 2005 135

Example: Details

Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

Security in Distributed Systems B. W. Lampson 4 January 2005 136

The Example Reviewed
Kws says Kn ⇒ Kws as Taos node credentials
Kbwl says Kn ⇒
 (Kws as Taos) for Kbwl

login
session

Kn says C ⇒ Kn channel
C says C | pr ⇒ (Kws as Taos as
Accounting) for Kbwl

process

C | pr says “read file foo” request

Workstation
hardware WS

Taos node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

WS as Taos for bwl
Kn–1

Kws–1

pr
WS as Taos as
Accounting for bwl

C

bwl

file foo

SRC-node as Accounting for bwl
may read

Kbwl
-1

WS as Taos

Kbwl ⇒ bwl Kws ⇒ WS

WS as Taos ⇒ SRC-node

Security in Distributed Systems B. W. Lampson 4 January 2005 137

Bytes vs. Secure Data

Can choose the the flow and storage of encrypted bytes
optimize

– simplicity
– performance
– availability.

Public key = off-line broadcast channel.
– Write certificate on a tightly secured offline system
– Store it in untrusted system; anyone can verify it.

Certificates are secure answers to pre-determined queries,
(for example, “What is Alice’s key?”) not magic.

– It’s the same to query an on-line secure database
(say Kerberos KDC) over a secure channel

Security in Distributed Systems B. W. Lampson 4 January 2005 138

Caching Secure Data

Caching can greatly improve performance
It doesn’t affect security or availability

– as long as there’s always a way to reload the cache
if gets cleared or invalidated

Security in Distributed Systems B. W. Lampson 4 January 2005 139

Auditing

Checking access:
Given a request Q says read O
 an ACL P may read/write O

Check that Q speaks for P Q ⇒ P
 rights are enough read/write ≥ read

Auditing
Each step is justified by

a signed statement, or
a rule

Security in Distributed Systems B. W. Lampson 4 January 2005 140

Implement: Tools and Assurance

Services — tools for implementation
Authentication Who said it?
Authorization Who is trusted?
Auditing What happened?

Trusted computing base
Keep it small and simple
Validate each component carefully

Security in Distributed Systems B. W. Lampson 4 January 2005 141

The “Speaks for” Relation ⇒

Principal A speaks for B about T A ⇒T B
If A says something in set T, B does too:
Thus, A is stronger than B, or responsible for B, about T

Precisely: (A says s) ∧ (s ∈ T) implies (B says s)
These are the links in the chain of responsibility
Examples

Alice ⇒ Atom group of people
Key #7438 ⇒ Alice key for Alice

Security in Distributed Systems B. W. Lampson 4 January 2005 142

Chain of responsibility

Alice at Intel, working on Atom, connects to Spectra,
Atom’s web page, with SSL
Chain of responsibility:
 KSSL ⇒ Ktemp ⇒ KAlice
 ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒ Spectra

says

KSSL

says
says

Alice’s
smart card

Alice’s login
system

Spectra
web page

Ktemp

Alice@Intel Atom@Microsoft

Microsoft

Intel

KAlice Spectra
ACL

Security in Distributed Systems B. W. Lampson 4 January 2005 143

References

Look at my web page for these:
research.microsoft.com/lampson
Computer security in the real world. At ACSAC 2000. A
shorter version is in IEEE Computer, June 2004
Authentication in distributed systems: Theory and
practice. ACM Trans. Computer Sys. 10, 4 (Nov. 1992)
Authentication in the Taos operating system. ACM Trans.
Computer Systems 12, 1 (Feb. 1994)
SDSI—A Simple Distributed Security Infrastructure,
Butler W. Lampson and Ronald L. Rivest.

Security in Distributed Systems B. W. Lampson 4 January 2005 144

References

Jon Howell and David Kotz. End-to-end authorization. In
Proc. OSDI 2000
Paul England et al. A Trusted Open Platform, IEEE
Computer, July 2003

Ross Anderson—www.cl.cam.ac.uk/users/rja14
Bruce Schneier—Secrets and Lies
Kevin Mitnick—The Art of Deception

Security in Distributed Systems B. W. Lampson 4 January 2005 145

